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1- Introduction

Definition of differential equations

A differential equation is an equation that contains one or more derivatives,
such as

dy  d%y . v, e
2 +—2=C0SX , Dz+D%+z=0, y"+y —Inx=0 and x-2X=5

dx  gx2

Classification of differential equations

A) By type:
* Ordinary differential equation (ODE): in which all derivatives are with

respect to a single independent variable, such as
dy dy dz _

——+Inx=x, dy + xdx =0, and —

=0.
dx dx dx

* Partial differential equation (PDE): in which at least one derivative is with
respect to two or more independent variables, such as

o%u au ow _ou au

—+—=X and —=—+—.

o2 oY X Ox oy
B) By order:

The order of the differential equation is the order of the highest derivative
appears in that equation, for example

2
(%) +sin x =0 is a first-order ordinary differential equation (1 order ODE).
X
o°u  au o o _ o
—+—=0 isathird-order partial differential equation (3™ order PDE).

ox®
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C) By degree:

The degree of the differential equation is the power of the highest derivative

appears in that equation, for example

dx

yrr+yr_y2:ex

(ym)Z + 2(y1)4 = 2X

D) By linearity:

2
(ﬂj +sinx=0 is a 2™ degree, 1% order ODE.

is a 1% degree, 2" order ODE.

is a 2" degree, 3" order ODE.

A differential equation is said to be "linear DE" if and only if each term of the
equation which contains a dependent variable and\or its derivative is of linear form.

In another words a differential equation is said to be "linear DE" if:

1- The dependent variable and all its derivatives appear in a linear form.
2- There is no production of a dependent variable with one of its derivatives, or

one of its derivatives with another derivative.

For example

ym+2yr+ y:XZ

%+ y?=1

dx

d’y
dx?

+siny=0

y"+(y) =x

ou ou
- =Uu.—

ox® oy

4 2
dy diydy_,

dx*  dx? dx

is a linear 1% degree, 3" order ODE.

is a non-linear 1% degree, 1* order ODE.

is a non-linear 1% degree, 2™ order ODE.
is a non-linear 1% degree, 4" order ODE.

is a non-linear 1% degree, 3" order PDE.

is a non-linear 1% degree, 4" order ODE.
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Solution of differential equations

The solution of a DE is a relation between the variables which is free of
derivatives and satisfies that DE identically.
* General solution: The general solution of the n" order DE is a relation between the
variables involving n independent arbitrary constants which satisfy the DE. For

3
example, for the DE a7y =0, y, = A is a solution to the above DE., y,= Bx is also

dx®

a solution, and y, = Cx? is also a solution.

LY=y HY, Y =AY Bx + Cx? is a general solution (G.S).

* Particular solution: The particular solution of a DE is one obtained from the
general solution of that DE by assigning specific values to the arbitrary constants. For

2
example, for the DE d—zzo, y = A+ Bx is a general solution (G.S) to the above
dx

DE. Then y =2+ 3x is a particular solution (P.S) to the above DE.

Note: If % =X = dy=xdx (variables are separated),

2
then, to solve it  [dy=[xdx = y:%+C.

If %:x+y = dy=(x+y)dx (variables are not separated),

then we must find a proper way to solve it.

Oriqgin of differential equations

* Geometric problems. For example
If we want to find the family of curves which have a value equal to its slope

_dy

then we must solvethe DE vy 5
X

* Physical problems. For example

2
> F :m.d—;( (Newton's 2" law) and Ely"=—M  (Flexural equation)
dt
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2- First-Order Ordinary Differential Equations

Introduction

A differential equation of the first order and first degree may be written in one
of the following two forms

1- j—y =f(X,y) (The slope form)
X

2- M(x,y)dx+ N(x,y)dy=0 (The exact form)
For example, the following DE

dy 2x-y

may be rewrittenas  (2x—y)dx —(y —3x)dy =0,
dx y-3x
2X—Y
where, f(Xx,y)= 3 M(x,y)=2x-y, and N(x,y)=—(y—3X).

1- Separable variables differential equations

If we can separate the dependent variable and its differential from the
independent variable and its differential in a DE, then this DE is called "separable
variables DE". For example, if a given first-order DE can be reduced to

% =f(Xx,y) = % =g(x).n(y) = ﬁ.dy =g(x).dx.

Or M(x,y)dx+ N(x,y)dy=0 = gl(x).hl(y).dx+ gz(x).hz(y).dy:O,
g (x) h (y)
L dx+-2—.
g,(x) h (y)

then such equation is called "separable variables DE" which can be solved by

dy=0,

integrating both sides.
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Example 1: Solve the following first-order differential equation % = _—X.
X Yy
Solution :
dy —x .
PV (separable variables DE) = y.dy =—x.dx,
2 2
y© =X
dy = | — xdx —=—+C,
Jydy=] = >~ G
or yZ=—x%+ 2C, =N yZ+x% = 2C,
y2+x*=C. [C=2C] (General solution G.S)
Notes:
* The previous DE may be given in different forms, like
y'=—% or Dy=_>" or y.dy + x.dx=0.
y y
* As a check, we try to find dy/dx by differentiating the general solution,
y2+x?=C =  2ydy+2xdx=0 = dy_=x 0.K
dx vy
o 2yWiox—o L W_=x
dx dx vy
Example 2: Solve 1+ x3).dy — x?y.dx=0.
Solution:
3 ) . dy  x?
(1+x°).dy —x“y.dx=0 (separable variables DE) = —-— dx =0,
Y 1+x3
2
jﬂ—j X dx =0 = Iny—lln(1+x3):cl,
Y T14+%° 3
or 3Iny—In(1+x*)=3C, = Iny® —In(1+ x®) =C,, [C,=3C,]
3 3 3
= hY -c, = L & = Y _c [c=e¥]
1+x3 1+x° 1+ x3
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Example 3: Solve y' =Xy —X, y(0)=3.
Solution:
dy dy .
—— =Xy — X = —=Xx(y-1) (separable variables DE)
dx dx
2
W = ji:jxdx =  I(y-)=>2+cC,
y—-1 y-1 2 1
x>12+C 2,, C 2 Cc
or y-1l=e 1 = y-1=e¢*""e! = y-1=Ce*'?, [C=e ]
y=1+Ce* /2. (G.S)

2
Apply the given condition, at x=0, y=3 = 3=1+Ce®’? = cCc=2.

y=1+ 2eX /2. (P.S)
Example 4: Solve % =2 4e¥Xty-1
X
Solution:
Let z=2x+y-1 = dz =2dx +dy = ﬂ:%— :
dx dx
9 _ 2=-2+¢’ = az =e’,  (separable variables DE)
dx dx
E=dx = %:jdx = -e “=x+C,
ez ez 1
or x+e‘2:—C1 = x+e X ¥+rl_c, [C=—C] (G.S)
Example 5: Solve  x(2xy +1)dy + y(1+ 2xy — x®y*)dx =0.
Solution:
z
dz — —dx
Let z=xy = dz=xdy+ydx = dy:dz—xydx dy = xX ,
dz —EdX 4

x(z4+)— X 1 E(1427-2%)dx=0 = (22 +1).dz -2 .dx =0, (separable)
X X X
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22+1.dz—%:0 = j22+1dz— %:jo = j[£+i}dz— %:jo,
Z3

24 X 24 X z* X
_%_%_M)(:Cl = 12+ ! 3—|—|I’]X=C. [C=—C1] (G.S)
2?3z (xy)”  3(xy)

2- Homogeneous differential equations (reducible to separable DE)

A function f(x,y) is said to be homogeneous of degree n if;

f(tx,ty)=t"f(x,y).
For example,

*If f(xy)=2y* —x%y?, then

f(xty) =2(ty)* - () (ty)* =t*(2y* - x*y*) =t*f (x,y),
f (x,y) is homogeneous of degree 4.

“If f(xy)=2 —3¢"Y +sin>, then
X y

t_x
ty
f (x,y) is homogeneous of degree 0.

f (tx, ty) _Y gty i 0L —3e*"Y +5in Xy =t°F (x,y),
tx X y

The differential equation M(x,y)dx+ N(x,y)dy=0 is called homogeneous if
M(x,y) and N(x,y) are homogeneous and of the same degree (i.e. all terms of the

DE are of the same total degree in the variables x and y).

For example,
* x(y + x)dx = y2dy, is homogeneous of degree 2.
* (xy + X)dx = (y* —x?)dy, is non-homogeneous.

* y(Iny—Inx—-21)dx+ xdy =0, is homogeneous of degree 1.
* y(Iny-1)dx+ xdy =0, IS non-homogeneous.
The homogeneous DE can be always reduced to separable variables DE by the

substitution y=ux or Xx=uy.
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Example 1: Solve 2(2x? + y?)dx — xydy =0.
Solution :

The given DE is homogeneous of degree 2.
Let y=ux = dy =udx + xdu,

= 2(2x% + (ux)?)dx — x(ux)(udx + xdu) =0
= (4x? + 2u®x?)dx — u?x?dx —ux3du =0,

= (@x2+ux))dx—ux’du=0 = (4+u®)dx—uxdu=0, (Separable DE)

dx du=0 = Inx—lln(4+u2)=C,
X 4+u? 2 '
, x2 G 2C
or 2Inx—-In(4+u=2C = In > =2C = >=e 1,
1 4+uU 1 44U
2 2C
- X _-C [C=e '] = x2=C@+u’) = x2=C@d+)?),
4+ X
x* =C(4x* + y?). (G.S)

Note:
* The given DE can also be solved by letting x=uy.

Example 2: Solve ydx + {ycosz(il - x}dy =0.
y

Solution :
The given DE is homogeneous of degree 1.
Let x=uy = dx =udy + ydu,

- y(udy + ydu) + {ycos2 (ﬂj - uy}dy =0 = yudy+ y?du + ycos?udy —uydy =0,
y

= y’du+ycos’udy=0 = ydu+cos’udy=0, (Separable DE)

du +ﬂ:0 — SeCZUdU‘Fﬂ:O = tanu+|ny:C,
cosu Y y

tan(§j+ Iny=C. (G.S)
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Reducible to homogeneous DE

Considerthe DE  (ax+by+c)dx+(a,x+b,y+c,)dy=0.
If C,=cC, =0, then the given DE is homogeneous.
If c,#0 or C,=0, the given DE is nonhomogeneous, then consider the lines:

ax+by+c=0 and ax+b,y+c,=0.

a b
*If | L b—l , then the two lines intersect at a point such as p(h,k), and the given
a
2 2

DE can be reduced to a homogeneous DE by the two substitutions:

X=X +h and y=y +k.
a b
*If | L =—L=r |, then the two lines are parallel, and the given DE becomes
a
2 2

[r(a,x+b,y)+c Jdx*x[(a,x+Db,y)+c,]dy =0,
and the given DE can be reduced to a separable variables DE by the substitution:
Z=a,Xx+h,y.

Example 1: Solve (x—4y—3)dx—(x—6y—5)dy =0.

Solution :
i:]_':]_ and E:__L]-:g_
a, 1 b, -6 3
Since &, E—l , then the two lines intersect. To find the point of intersection,
a'2 2
Xx—4y-3=0, ... (1)
X—6y—-5=0. ... (2)

Subtracting Eq.2 from Eq.1 gives 2y+2=0 = y=-1 = x=-1.
Thus the point of intersection p(h,k) is p(-1-1).

. Let x=Xx +h=x"-1 — dx =dx’,

and y=y +k=y -1 =X dy =dy’,
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[(X -1)—4(y" -1 -3Jdx —[(x -1)—6(y" —1)-5]dy =0,
= (X —4y)dx —(x -6y )dy =0. (Homogeneous DE)
Let y =ux = dy” =u.dx” +x .du,

[X" —4(ux)]dx =[x —6(ux)]u.dx” + x".du) =0,

= (1-5u+6u?)dx” —x (L—6u)du=0, (Separable DE)
I T S -y el VY (1}
X  6u®-5u+1 X 6u” —5u+1
1-6u 1-6u A B
For = = + ,
6us —5u+1 Bu-)(2u-1) (Bu-1) (2u-1
= 1-6u=A(Ru-1)+B@Bu-1),
At u:1 = 1—6(1): 2(1)—1 +0 = —1:A(_—1j = A=3.
3 3 3 3
At u:1 = 1—6(EJ:O+B B(EJ—l = —2:B(EJ = B=-4.
2 2 2 2
jdx —j’{ 3, _—4 }du:jo = Inx —In(Bu-1)+2In(2u-1)=C,
o l@u-1) (u-1) )
N 2
O I ¢ I
— In M :C — M:e 1 = X :C [C:e 1]’
Bu-1

SR 0D

* * 2
x*{zyix} ey
L 1 _c — M:C’
|:3y*—x*:| (3y —X)

*
X

2y +D) - (< +DF _ -
[3(y +1) ~ (x+1)]

= (y-x+1)?=C@By-x+2). (G.S)

Example 2: Solve (4x+6y+1)dy—(2x+3y+4)dx=0.

Solution :

-10 -



Engineering Analysis / Civil Eng. / 3™ Class Prepared by: Dr. Ahmed Sagban Saadoon

a b
G4, and a5,
a, 2 b2 3

Since & _ Q then the two lines are parallel.
a2 b2
[2(2x+3y) +1)]dy — (2x+3y +4)dx =0,

Let z=2x+3y = dz = 2dx + 3dy = dy:%(dz—de),

(22 +1)[% (dz = 2dX)]— (2 + 4)dx =0,

= (2z+1)dz—-7(z+2)dx =0, (Separable DE)
= 22Jrldz—?dx:O = j22+1dz—j7dx:j0.
Z+2 Z+2
For 22+1:2(z+2)—3:2_ 3 |
Z+2 Z+2 Z+2

3
2———|dz—|7dx=|0 22—-3In(z+2)-7x=C,
- ldz-[7dx=[0 = (z+2) :
= 2(2x+3y)—3In(2x+3y+2)—7x:C1

= 3In(2x+3y+2):6y—3x—C1

= In(2x+3y+2)=2y—-x+C. [C=--1] (G.S)

3- Exact differential equations

Theorem: The differential equation M (X, y)dx + N(x,y)dy =0 is exact if and only if
M _oN
oy ox

Proof: Let f(x,y)=C be any function, then the total differentiation (exact

differential) of f(Xx,y) is given by;

df :ﬂ.dx+ﬂ.dy:0.
OX oy

of of
Let —=M(X, and —=N(X,Y), then
o (x,Y) Y (X, Y)

S M(X y)dx+ N(x,y)dy=0.

-11-
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2 2
We have ﬂ:a f and @:a f .
oy  OyoX OX  oxoy

o*f _ o°f .M _oN

But = = S =—,
OyoX  Oxoy oy OX

To solve an exact DE we use the following procedure;

%:M(x,y) = f(xy)=[MXxy)dx+g(y),

Since f(x,y)=C = [M(x,y)dx+g(y)=C.
Tofind g(y),
of
5"

:.%[[M(x,y).dx]+g'(y)=N(x,y) N g'(y)=N(x,y)—g[[M(x,y)-dx],

%UM(X, y).dx|+ g'(y), but %= N(xy),

-~ g(y)= I{N (X, y) - %UM (X, y)-dX]}dy-

Example 1: Solve (3x%y + 2xy)dx + (x* + x* + 2y)dy =0.
Solution :

M (X, y) = 3x2y + 2xy = %:3x2+2x,

oN

N(x,y)=x*+x*+2y = a—:3xz+2x.
X
Since ﬂ :Z—N, then the given DE is an exact DE.
X
* Solution [;

of
M(x,y)=&=3xzy+2w = f(xy)=xy+xy+g(y),

g=x3+x2+g'(y), but ﬁ:N(x,y),

oy oy

-12 -
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XX +g' () =N Y) =X +x2+2y = g'(Y)=2y = g(y)=VY>,

s EGY) =Xy + X2y + yP, but f(x,y)=C,
Xy +xPy+y?=C. (G.S)
* Solution I1;

N(x,y):%:x3+x2+2y = f(x,y) =Xy +x2y+ y? +q(x),

of 9 of
—=3xy+2xy +qg'(x), but —=M(x,V),
v y +2Xy +q'(X) v (X,Y)

LY+ +q()=M(x ) =3’y +2xy = (=0 = q(x)=C,
.'.f(x,y):x3y+x2y+y2+Cl, but f(xy)=C,

Xy +xPy+y?+C =C, = x}y+x’y+y?*=C. [C=C,-C,] (G.S)

* Solution IlI;
M(x,y)=%=3xzy+2w = fxy)=xy+xy+g(y),
N(x,y)=%=x3+x2+2y =  fxy)=x3y+x°y+y?+q(x),
Comparing the above two expressions of f(x,y) yields,
g(y)=y*  and () =0,
s EGY) =Xy + X2y + Y2, but f(x,y)=C,
Xy +x2y+y?=C. (G.S)

Example 2: Solve (x?cosxy +€Y)dy + (xy cosxy +sin xy)dx =0.

Solution :

M(X,y)=Xycosxy +sinxy =— % = X[ y(—Sin xy)X + cosxy] + cosxy(X),

-13 -
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= —x2ysin Xy + 2xcosxy,

N(x,y) = x*cosxy +e’ = %:xz(—sin xy)y + cosxy(2x) + 0,

= —x2ysin Xy + 2XCOSXy .

Since oM = Z—N then the given DE is an exact DE.
X

N=—=x%cosxy+e’ =  f=xsinxy+e’+g(x),

o
oy
of

2=

SoXycosxy +sinxy +g'(x) =M =xycosxy +sinxy = g'(x)=0 = g(x)=C1,

%:X(COSXV)V+Sinxy+O+ 9'(x), but M,

.'.f:xsinxy+ey+Cl, but f:CZ,

~.xsinxy+e’+C,=C, = xsinxy+e’=C. [C=C,-C;,] (G.S)

Reducible to exact differential equations

The differential equation M (X, y)dx+ N(x,y)dy =0 which is not exact (i.e.

ﬂ;ﬁ@) can be reduced to exact DE by multiplying it by a suitable function

oy oX
(X, y) which is called integrating factor (I.F),

LMdx + £Ndy =0.
: . O 0
The above new DE is exact if —(xM)=—(uN),
oy OX

yaMnL M a—’uz,ua—NJr Na—’u.
oy oy OX OX
The integrating factor x(x,y) may be a function of x only, function of y only , or a

function of both x and y.

There are two methods to find the integrating factor:

-14 -
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1) By equations

- If —(ﬂ — ﬁJ Is a function of x only («(x,y) is a function of x only),

N{ oy ox
. a—”zo and a—ﬂ:d—ﬂ,then Eq.(1) becomes
oy ox  dx
oM oN d,u oM ON du
= i — " |=N-EX,
ﬂay ﬂ@x dx = ﬂ[ay 5Xj dx
u_1foM NV o (M _aN)
Y7, N oy OX N\ oy Ox

oM oN
J’ﬁ{ay B ax]dx
u=e .

Example 1: Solve (x +3y?)dx + 2xydy =0.

Solution :
M (X, y) = X + 3y? = aM=6y,
oy
N(x,y)=2xy = N =2
ox
Since M 7&@, then the given DE is not exact.
oy OX
Check, M _ N L (6y —2y)= 2 (function of x only)
N oy OX 2xy X
Iﬁ[%_%}jx _[ dx 2
su=e oy — 2Inx: Inx =X2.

Multiplying the given DE by the above integrating factor (1.F) gives

X2 (X +3y2)dx+ x2(2xy)dy=0 = (x*+3x%y?)dx + 2x%ydy =0.

Check,  M(X,y)=x>+3x2y? =N aﬂ=6X2y,
oy

N(x,y)=2xy = a—N:6x2y.
OX

-15 -
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Since %VI = 2—N then the given DE is reduced to exact one.
X

4
T erayr = =X aeyragy),
OX 4

=2x°y+g'(y), but

2% =

23y +g'(Y)=N=2xy = g¢d'(y)=0 = g(y)=C,,
4

R SELINCIV IOl but  f=C,
4 1

2

4 4

.'.Xj+x3y2+C1=Cz = XZ+X3y2=C3, [C;=C, —C]

or x* +4x3y? =C. [C=4C,] (G.S)

Example 2: Solve (siny + x? + 2x)dx = cosydy .
Solution :

(siny + x? + 2x)dx = cos ydy = (siny + x? + 2x)dx —cosydy =0.
M (X, y) =siny + x* + 2x = w:cosy,

oN

—=0.
OX

N(X,y)=-cosy

Since oM # 8—N then the given DE is not exact.
oy oX

Check, ifoM _oN)_ 1 (cosy—0)=-1  (function of x only)
N\ oy oOx) —cosy

1{oM ©ON
Jﬁ[—-;}“
¥ = u=e

Multiplying the given DE by the above integrating factor (1.F) gives

ﬁ4mx

SuU=¢e =e ",

e *(siny + x? + 2x)dx —e™ *cosydy =0.

-16 -
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N=—=-e "cosy = f =—e *siny+g(x),
oy

=e~ *siny +g'(x), but Q:M,
OX

e *siny+g'(X)=M=e *(siny+x*+2x) = g'(X)=x% *+2xe %,
Lg(X)=—x% F—2xe ¥ —2e ¥ —2xe ¥ -2 % = g(X)=—x% ¥ —4xe ¥ —4e ¥,
s f=—e"siny—x% ¥ —4xe ¥ —4e ¥, but f=C,

S — *siny—x%e ¥ —4xe” ¥ —4e ¥ =C,

or  x?+4x+4+siny=Ce*. [C=-C/] (G.S)

Note;

[2xe™ *dx =2x(—e" *)—2e™*
[x%e *dx =x*(—e *)—2xe” ¥ +2(—e" )
=-2xe ¥ —-2e "

——x% X —2xe ¥ —2e *

- If LfoM_ N is a function of y only (u(x,y) is a function of y only),
M\ oy ox
oH

=0 and a—’Ll:t]l—#, then Eq.(1) becomes
OX oy dy
WM g O N LM Ny e
oy dy OX oy oOXx dy

du_=3M NV M N
u Moy ox M ay ox

Tl e

-17 -
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Example 1: Solve (y+ 2x)dx + x(y + x+1)dy =0.

Solution :
M(X,y) =Y+ 2X = le,
oy
NOXY) =Xy +Xx2+X = %—N:y+2x+1.
X
Since ﬂ;ﬁ%—s, then the given DE is not exact.
Check, i(ﬁM _8N]:1—(y+2x+l) _—(y*29 (is not function of x only)
N{ oy ox Xy + X2 + X X(y+Xx+1)
Check, LM _ON) 1=(y+2x+D) —(y+29)_ 4 (function of y only)
M OX y + 2X Y + 2X
i{aﬂ a_NJy
- - —((vad
su=e MY — y:eI gy

Multiplying the given DE by the above integrating factor (1.F) gives

e’ (y +2x)dx + xe¥ (y + x +1)dy =0.

X
q:xyey +xe’ +x% +g'(y), but %: N,

xye’ +xe’ +x%e’ +g'(y)=N=xye” +x%’ +xe’ = g'(y)=0 = g(y)=C,
o f=xye¥ + x%e? +C,, but f=C,

2

~xye’ +x%€Y +C,=C, = xy+x*=Ce’. [C=C,-C,] (G.S)

Example 2: Solve cosy.dx + (2xsin y —cos® y).dy =0.

Solution :

oM )
M =cosy = E:—smy,
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N=2xsiny—cos’y = (2—N=25iny.
X

Since oM # ﬁ, then the given DE is not exact.
oy OX
Check,itéwI _N j _—Siny-2siny _ -3siny (is not function of x only)
NUGy OX) oxsiny—cos’y 2xsiny-—cos’y
Check, i(@M _N j _Zsiny-2siny —3siny , (function of y only)
oy oX cosy cosy
N
n=e oy — u=e cosy _ e—3|ncosy _ COS_S y = .
cos’y
Multiplying the given DE by the above integrating factor (1.F) gives
(cosy).dx + ! (2xsiny —cos® y).dy =0 = .dx+(2xSln y -1).dy=0
cos’y cos®y cos’y cos’y
m=2 -1 = =g,
X cos?y cos’y
Gl =-2xc0s 2.(-siny) + g'(y) = 2xsin y +9'(y), but a =N,
oy cos’y oy
2Xsin , 2Xsin ,
Mgy =N="2 o o g(y)=1 = g =y,
cos’y cos’y
Lf=—X _y, but  f=C,
cos’y
X _y-c, or x=(y+C)cos’y. (G.S)
cos’y

ii- If u(x,y) is afunction of x and y, then a partial DE should be used.

I1) By inspection
Inspection may be used when the integrating factor is simple such that it can be
expected. This occurs when the DE can be rewritten as one of the following forms:
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Differential expression Integrating factor Exact differential
x.dy + y.dx 1 x.dy + ydx =d(xy)
x.dy + y.dx xiy xdy + ydx =d(Inxy)
1 xdy + ydx 1
x.dy + y.dx ) i’(z—yi’ =—d (E)
1 xdy — ydx
x.dy — y.dx = % =d (%)
1 xdy — ydx X
x.dy — y.dx v % =—d (9)
x.dy — y.dx xiy xdyx;yydx =d(In %) =—d(In g)
2 2xdy — 2ydx X + X —
x.dy — y.dx Ty X};fyz/:d(ln r;’) = —d(In ﬁ)
1 xdy — ydx § a4 X
x.dy — y.dx e —XZ - 52 — d(tan 1%) — d(tan 1§)
1 xdy — ydx .4y
x.dy — y.dx — ———=——=d(sinh— =)
=y XX +y? XA X2+ y? X
1 xdy — ydx .4 X
x.dy — y.dx yxz—\/Tyz yxz—\/Tyz =—d(sinh ! ;)
x.dx + y.dy 2 2xdx + 2ydy =d(x* + y?)
2 2xdx +2yd
X.dx + y.dy Ty Tyz/y =d[In(x* + y*)]
1 xdx + yd
X.dx + y.dy W 2 +yy2y =d(y X2 +y?)
1 xdx — yd
x.dx — y.dy ) ?yyzy =d(yx? - y?)

Example 1: Solve

Solution :
x.dy + (x* —y).dx=0 =
xdy — ydx
X2
2
X + X_ — C
X 2 1

or  2y+x®=Cx.

x.dy + (x® —y).dx=0.

xdy — ydx + x3dx =0,

X

+ xdx=0 = d(zl+xdx=0,

[C=2C,]  (GS)
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Example 2: Solve  x.dx + (y —/x? + y*).dy =0.

Solution :

XX+ (y —y x> +y?).dy=0 =  xdx+ ydy —+/x* +y?dy =0,

xdx+ydy_dy:O N d( /x2+y2j—dy=0
VX2 +y°

VX2 +y?—y=C. (G.S)

Example 3: Solve  y.dx—(x* + y* + x).dy =0.

Solution :
y.dx —(x* + y* +x).dy =0 =  —xdy+ ydx — (x> +y*)dy =0,
= xdy—ydx+ (x> +y?)dy=0 = M+dy:0,
X2 +y?
= d(tanlij+dy:0 = tan*ZL+y=C,
X X
or tan‘lX:C—y = X:tan(C—y) - x=—J (G.S)
X X tan(C —y)
Example 4: Solve  (xy® + y).dx + x.dy =0.
Solution :
(xy® +y).dx +xdy=0 =  xy’dx+xdy + ydx =0,
_ %+Xdy+ydx:0 N %—d(i]:o,
X x2y? X Xy
1
—  Ihx-—=cC. (G.S)
Xy
Example 5: Solve  2y®dx + (2x + 3xy)dy =0.
Solution :
2y%dx + (2x +3xy)dy =0 = 2y°dx+3xydy +2xdy =0, (x xy)
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= 2xy%dx +3x?y%dy + 2x%ydy =0 = d(x®y®})+2x°ydy=0, (x L )

X2y3
2.,3
Y, 2420 =  mey)-2-c,
x2y? % y
or yIn(x?y?)-2=0Cy. (G.S)

4- Linear differential equations

The general form of the first order linear differential equation is
d
T+ P(X).y=Q(x),
dx

(Note that if P(x)=0 or Q(x) =0, then the above DE is a separable variables DE).

If the above linear DE is not exact DE, so it can be reduced to exact one by
multiplying it with a suitable integrating factor which can be found as follows,

%JrP(x).y:Q(x) = dy+P(x).ydx=Q(x)dx = [P(x)y —Q(x)]dx+dy=0,

oM

M(x,y) =P(x)y —Q(x) e P(x),

N(x,y)=1 = %:0.

1(oM oN)|_P(x)-0_ .

N[ & ox j == " P(x) (function of x only)
1|oM ON

...ﬂ:ejﬁ[g—;]dx _ lu:eJ'P(x)dx.

Multiplying the given DE by the above integrating factor (1.F) gives

T by — 000Tdx + ey =0,

ejP(x)dx IP(x)dx

P(x)dx
= P(x)ydx +ej dy — Q(x).e

dx=0,

.[P(x)dx

P(x)dx ) dx
= d[efp(x)dx.y}:Q(x).e dx = .. ej .y:jQ(x).eIP( Xax +C.

Or simply py=[uQdx+C.
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Example 1: Solve (x? + X)dy = (x° + 3xy + 3y)dx.
Solution :

(x? + x)dy = (x° + 3xy + 3y)dx = x(x +1)%:x5 +3y(x+1),

4 4
ﬂ: X +3_y - ﬂ—ﬁy: X ,  (Linear DE with respect to y)

dx x+1 X dx x Xx+1

-3 x4

where, P(x)=— and Q(x)= :
X X+1

IP(x)dx

H=e =

4

1 1 X
y=[uQdx+C S y=[=
py=[uQ = e IX3 1

dx+C,

= Y (X dx+cC = l:j[1+_—1]dx+c,
3 X+1 %3 X+1

- lazx—ln(x+1)+c or y=xx-In(x+1)+CJ. (G.S)
X

Example 2: Solve (sin? x — y)dx — tan xdy =0.

Solution :

(sin? x — y)dx — tan xdy =0 = tanx%:sinzx—y,

in 2 H
= dy _sin"x__y = dy + 1 ,_sin°x , (Linear DE with respect to y)
dx tanx tanx dx tanx tan x

1 X -2
where, P(x) = —— = %X and Q= S X
tanx  sinx tan x

=SIiN XCOSX.

ICOSX

IP(x)dx i X Insinx ;
= p=e’shx  —e =sinXx.

H=e
,u.y:jy.de+C = sin x.y:jsin x.(sinxcosx)dx+C1,

-23 -



Engineering Analysis / Civil Eng. / 3™ Class Prepared by: Dr. Ahmed Sagban Saadoon

=3
sin” x
+C ,

1

= ysinx=jsin2xcosxdx+C1 = ysinx=

or 3ysinx=sin®x+C. [C=3C] (G.S)

Example 3: Solve (x—2y)dy + ydx =0.

Solution :
(x-2y)dy +ydx=0 = %4— x—y2y =0. (Nonlinear with respect to y)
Bt K X o %+£x:2, (Linear DE with respect to x)
dy vy dy 'y
where, P(y) :% and Q(y)=2.
1
'u:eIP(y)dy - u:e'[;dy:e'”y _y.
px=[puQdy+C = yx=[y.(2)dy+C,
= xy =y? +C. (G.S)

Reducible to linear differential equations
Sometimes a nonlinear DE can be reduced to a linear DE. One set of equations
for which this can always be achieved is the class of "Bernoulli Equation™. These are

of the form,
d n
& POy =Q09y".
X
When n=0 or n=1, the above DE is linear.

Consider the case when n=01; division by y" yields

y-“%w(x).yl-” ~Q(x).
X

_ dz _ndy _ady 1 dz
Let z=y* " —=(1-n)y "= e A
Y = dx ( )Y dx = y dx 1-n dx
1 dz
. ——+P(x).z=0Q(x),
g FPX02=Q0)
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Or % +@-n)P(x).z=1-n)Q(Xx). (Linear DE with respect to z)
X
So, Bernoulli's equation can be reduced to a linear DE by the transformation,
7 = yl -n

Example 1: Solve xdy + (3y — x*y?)dx =0.

Solution :

ﬂ+3y_x3y2 :O

xdy + 8y — x*y?)dx =0 =N
dx X

= @, E.y =x’y?. (Bernoulli's equation)

dx x
Division by y? gives

y—zﬂ_i_gy—l_xz
dx X
_ dz _, dy _,dy dz
Let z=y ! = Loy 22 = 2_:__,
y dx y dx y dx  dx
_% E Z=X2,
dx X
dz 3 ’ . i
= — ——.z=-X“, (Linear DE with respect to z)
dx X
where, P(x) = =3 and Q(x) =—x2.
X
J'P(x)dx =3 x 1
u=e — u=e’ :e—SInx:eInX*3:X—3:_.
X3
1 1 )
pz=[puQdx+C =3 —.z=[=.(-x*)dx+C,
3 3
X X
z 1
= —=—[=dx+C = —=-Ihx+C,
x> X x3
3 -1 1
= z=x’(C-Inx). But z=y "=—,
y
loec-my o y=—— 1t @3
y x*(C —Inx)
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Example 2: Solve  x%dx —(sinycos® y + x* tan y)dy = 0.

Solution :

2
x2dx — (sinycos? y + x*tan y)dy =0 = dy _ X =0 (Nonlinear)

sinycos’ y + x> tany

But

%_sinyc032y+x3tany_O

X (tany).x = (sin ycos® y).x 2 (Bernoulli)
dy x2 dy

Division by x2 gives  x° % — (tany).x* =sinycos® y.
y

Let z=x° 92 g2 I =  x2= dx _1dz
dy dy dy "3 dy
1 dz . ’ dz . ) :
vl (tany).z=sinycos"y = Vi (3tany).z=3sinycos“y, (Linear w.r.tz)
y
where, P(y)=-3tany and Q(y) =3sin ycos? y.
siny
,u:ejp(y)dy _ ﬂ:ef—stany.dy ‘3_[COSy gaincosy _ g3 v,
pz=[puQdy+C = cos’ y.z=[cos’ y.(3sin ycos® y)dy + C,
6
= cos’y.z=3[siny.cos’ydy+C = cos’yz= —3.002 Yic,
6
but z=x3 = x3cos3y:—COS Yic,
3 3 1 3
or x* =Csec y—Ecos y. (G.S)

5- Second order DE reduced to first order DE
A) When the dependent variable does not appear in the DE;

If the dependent variable (say y) does not appear in a second order DE, then

this equation can be reduced to a first order DE by letting

dy dy dz d?%y
z=f(x)=-2 —(2)=— —==7
=% = () dx(d) T W g
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2
Example: Solve y"+2y' =4x. (or u+2ﬂ:4x)
dx? X

Solution :
Since the dependent variable (y) does not appear in the given second order DE, then

this equation can be reduced to a first order DE by letting

2
1=t =Y SN dz_d%y
dx dx dx?
2
" M+2ﬂ:4x IS reduced to
dx? X
g_z +2z=4x, (Linear 1* order DE w.r.t 7)
X
where, P(x)=2 and Q(x)=4x.
P(x)dx 2dx
PN L
pz=[puQdx+C = e?.z=[e™.(4x)dx + C,
2x 2X 2X 1 2X 1 2X
= ze =4[ xe*dx +C = e =4=xe”* _Ze”]+C,
1 2 4 1
= zeZX:2xe2X-e2X+Cl = z=2x—1+Cle‘2X
dy dy ~2x
but z=— = oo —=2x-1+Ce“", (Separable DE)
dx dx 1
1 —2X
=  y=x? _X—ECe C2. (G.9)

B) When the independent variable does not appear in the DE;
If the independent variable (say x) does not appear in a second order DE, then
this equation can be reduced to a first order DE by letting

dy dy dz dy d?y
2= f(y)=" S ()=~ gl AR
W=z = () dx(d) Ty g
2
but Z:d—y = dz u
dx dy dx?
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Example: Solve Ay(yN?y" =(y)* +3.
Solution :

Since the independent variable (x) does not appear in the given second order
DE, then this equation can be reduced to a first order DE by letting

dy dy dz dy d’y
7= f(y)==-2 —(2)=— —=2==7
(y) i = ( ) dx(d ) = dydx g
2
but z=ﬂ = dz M
dx dy dx?
. 4y(y)y"=(y)* +3 s reduced to
4y22(z.%) =z*+3. (Separable DE)
y
3 4
Az°dz _ dy = In(z*+3)=hy+C = In(Z +3)=C,
Y +3 Y
Z4 +3 C 4
= =C  [where C =¢"] = 7"=Cy-3,
y 1 1 1
1/4 dy
= z=(Cy-3)"". But z=—,
1 dx
ﬂ_ __a\1l/4
=(Cy-3)"", (Separable DE)
dx 1
_ W g = (Cy-3) Yidy=dx,
Cy-3"* 1
— A cy-3¥t=x+C
3C 1 2’
3C
or (Cly—3)3’4 =Tl(x+cz). (G.S)
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3- Applications on First-Order ODE

Introduction
The mathematical formulation of physical problems involving continuously changing

quantities, often leads to differential equations of the first-order.

1- Orthogonal Trajectories

In many engineering problems, a family (set) of curves is given and it is
required to find another family whose curves intersect each of the given curves at
right angle.

Consider the function f(x,y)=C where C is a constant. By changing the

value of the constant C, a family (set) of curves are obtained for f(Xx,y), where each

curve has one value of the constant. It is required to find another set of curves which
are orthogonal to the first set. This is done by eliminating the constant C from

f (x,y)=C by differentiation, and then replacing :_y
X

of these curves by [-1/ %] to

get the required orthogonal set.

<
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Example 1: Find the orthogonal trajectories of y=Cx2.

Solution:
Step 1; Find the slope of the given set,

Method I,

2 —_—
y=Cx> = J—c. Bydifferentiation = dy - y.(2xdx) _ 0,
x? x*
2 dy 2y .
= x°dy-2xydx=0 = vl Bt (The slope of the given set)
XJ), X
Method I,
y=Cx®. Bydifferentiation = dy=2Cxdx = (%) = 2CX.
X 1
From the givenset C -y oo . (ﬂj 4|k = (QJ :Q.
%2 dx /), %2 dx ), X

Step 2; Find the slope of the required set,

Since the required and given sets are orthogonal, then (%) = —1/(ﬂ) :
2 1

X dx
. (ﬂj :_1/(ﬂj (ﬂ) _-X
dx /, X dx /), 2y

Step 3; Find the required set,
To find the required set we must solve the above differential equation,

dy_—x (separable variables DE) deo1 14 110
dx 2y
=  2ydy =—x.dXx,
2 2
2 _—X 2 X
Loy =——+K or —=K.
y > y o+
Notes, K=2 1 (1/2

* K must be positive since it is the sum of
two squares.
* y=Cx? isafamily of parabolas.

2
X : : :

* 2 _
ye o+ i =K isafamily of ellipses. c-"1 174" 110
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Example 2: Find the orthogonal trajectories of xy=C.

Solution:
Step 1; Find the slope of the given set,

By differentiation xdy + ydx=0 = (Qj =
1

dx

_y.

Step 2; Find the slope of the required set,

(2)-42) - (@) - @)
dx /, dx /; dx /, X dx /), 'y

Step 3; Find the required set,
dy X

i ; (separable variables DE) = ydy = x.dx ,
2 2
y _ X 2 2 _ _
7_2+K1 or y> —x* =K. [K=2K]

2- Suspended Cables
Example 1: Derive the differential equation of the curve of a perfectly flexible cable,

of uniform weight per unit length w, suspended between two points.

Solution: \/

Differentiating the last equation

Start from the lowest point C and consider c
a cable segment of length x from point C,
Y>F=0 = Tsinf=ws ... 1) s
SF=0 = Tcosd=H e (2) 777
Dividing Eq. (1) by (2), gives
tanH:E. But tanezd—y, Ay T-Si}f@ T
H dx '
% — W_-S . : 0 > TCOS o
dx H i

with respect to X, yields

) H ................ - X
dy _w ds

dx> H dx
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ds dy
But ds=./(dx)? +(dy)> or == [1+(D)?,
J(@x)? + (dy) o | +()

2
M L (ﬂ)2 . (2" order reducible to 1% order DE)
dx* H dx

Since y does not appear in the above DE, then this equation can be reduced to a first

order DE by letting

2
1= t=Y SN dz_d%y
dx dx dX2
dz > dz w
o —=—all+72 Separable DE =—.dXx,
dx H ( g ) = A1+ 22 H
—  silhtz="x+C, =  z=silh(L.x+C,).
H H
But 2= ﬂ:Sinh(ﬂ'X_i'Cl)’
dx dx H
H w
y:Wcosh(ﬁ.x+Cl)+C2. (G.9)

Appling the boundary conditions (B.C);
1- Atthe lowest point; y'(0)=0 = 0=sinh(0+C,) = C,=0.
2- Atthe lowest point; y(0)=0 = O:%cosh(0)+c2 = G, :—ﬂ.
W

y="eosh™x+0-1 = y=Hcosh™ ). (P.S)
w H W w H

Example 2: A suspended cable is hung between two points, of the same level, and is
subjected to a horizontal uniformly distributed load, attached to the cable by vertical
hangars, as shown in the figure. What is the shape of the cable at equilibrium? and
how does the tension vary along the cable? (Neglect self weight of the cable).
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Solution:
Start from the lowest point C (at midspan Ay T.Si,;\a o T
due to symmetry) and consider a cable :
segment of length x from point C, : ¥-0e> TcOS 0

YF=0 = Tsin0=qx ....... (1) I

Y Fx=0 = Tcosd=H ....... (2) E
Dividing Eq. (1) by (2), gives X

tanezﬂ. But tanezﬂ,

H dx :: X R
2
%:% - y:giHm. (G.9) qvx

Boundary conditions (B.C);
2

2
1- At the lowest point; y(0)=0 = 0:&+C = C=0 = yzﬁ.
2H 2H
. _ q(L/2)? qL?
2- At the right support; L/2)=b b= =—,
Ignt supp y(L/2) = oH = ™
x2 Ahx?
y=_ == (P.S)

Toqllis) . T

Consider the tension in the cable:
Atany pointalong the cable T =T, +T,” = T =4/(T.cosd)* +(T.sin6)?,

= T=JH)?2+@x)? = T=JH>+qx2.

Thus, the tension is minimum when x =0 (i.e, at the lowest point where it is equal to
H) and it increases towards the ends.

Note;
If we consider the self weight of the cable, then
YF=0 = TsinO0=0X+WS  .cooerrrrrrnnnn. (1)
Y>F=0 = Tcosd=H .. ()
Dividing Eq. (1) by (2), gives
tang = IX WS, But tané?:ﬂ = Q:M
dx dx H

Differentiating the last equation with respect to x, yields
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d’y q w ds > > ds |, dy..

- 14— But ds=./(d d or —=1+(—)",

dx> H +H dx . \/( X)" +(dly) dx +(dx)
q. w

The above resulted DE is so difficult to be solved analytically.

3- Flow through orifices
Consider a tank which contains any liquid and there is an orifice (hole) at its

bottom through which the liquid drains under the influence of gravity. Thus, the
depth of water is changed through time. In an interval of time dt, the water level will
fall by the amount dy, and the change of volume of liquid inside the tank is equal to
the volume of liquid drained outside the tank, i.e,
dV);, =(dV) oyt = Ady =-Q.dt,

where,

A is the cross sectional area of the tank. —
Q is the discharge of liquid through the orifice =C,.a.v.

— < —> |«

C, is the coefficient of discharge.

a is the area of the orifice (hole).
v is the velocity of liquid leaving the orifice =./2gy .

(—ve) the negative sign indicates that as t increases, y decreases.

Example 1: An inverted right circular conical tank, as shown in the figure, is initially
filled with water. The water drains, due to gravity, through a small hole of radius r at
the bottom. Find the height of water as a function of time and the time required for
the tank to drain completely.

s |
\

le
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Solution:
(dv)in = (dv)out = Ady =-Q.dt,
= Ady =-C,.av.dt,

h
=  mx’dy=-C,.ar’./2gy.dt,
=N x?.dy =—C,4r?./2gy.dt. v
Ry R?y? ) .
But x==S = ~—dy=—C,r J2g./y.dt. (Separable variables DE)
h
2 21,2 R
y R
\v ; 7 /Ady
212 Z -
- y3/2.dy:_mldt, H T h
R? y
2112
- gyS/ZZ_M_t+C_ (G.9) i v
Appling the initial condition (1.C); y h h
Initially, at t=0, the tank is filled with water, y=h,
y(0)=h =N §h5’2=0+c =N czéhf”z.
; Zys/z:_Cdrzhzmths/z or o2 :—5Cdr2h2m.t+h5/2. (P.S)
5 R? 5 2R?
The tank will be empty when y=0,
21n2 21,5/2
o _5Cer’h \/E.Hhm . (__ 2R*h |
2R? 5C,r’h?.,/2g

2 [RT h
or t=———|./—.
S5C, \r 29
Example 2: A water tank, rectangular in cross section, has the dimensions 20x12m
at the top and 6x10m at the bottom and is 3m in height. It is filled with water and
has a circular orifice of 5cm diameter at its bottom. Assuming C, =0.6 for the

orifice, find the equation of the height of water in the tank with time, then compute

the time required for empting the tank.
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Solution: 12m
dV),=dV)yy = Ady =-Q.dt,
-  Ady=-C,avdt, 7 \’ dy
7 A
=  xzdy=-C,.ar’./2gy.dt, 3m
10 25, y
(2y+6)( Y +10)dy = -0.67(7 )" 2x 98ly.at.
L U v Vv
N 20(%+2y+3)dy:—5.218><10‘3 y.dt, 10m

(Separable variables DE)

2

y 2y 3 4
( + +—)dy =-2.61x10""dt,
30y Wy Wy

= (% y*'? +2y"2 43y %)dy =-2.61x10"d,

2 512 4
o— +—
15y 3

y¥? +6y"?=-261x10"t+C.  (G.9)

Appling the initial condition (1.C);
Initially, at t=0, the tank is filled with water, y=3m,

. y(0)=3 = %xsm+gx33’2+6x3“2=0+c,

= C=194.
C 2ysiz By gz 616104194, (P.S)
The tank will be empty when y=0, 2_10:20_10
3
0=-2.61x10"*t+19.4, ’ 10
= t=74329.5sec s 3 v+

~ 20.65hr
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Useful expressions,

‘\Q\“‘\

O
m‘&@

< <>l

.
dy — & N
x= Ry g [T T

4- Motion of bodies

Example: A body, of mass m, falls from rest. If the drag (resisting) force of air is
assumed to be proportional to the instantaneous velocity of the body, find the
equation of motion of this body.

D
Solution:
Since the drag force D is proportional to the instantaneous T
T m.a
velocity v, i
.. Decv = D=Rwv. (R is the proportion constant) vy
>F=ma = w-D=ma = mg-Rv=ma, W
2 2
= mg- R _ m.d—zy = d—! JRA g. (reducible to 1% order DE)
dt dt dt® m dt

Since y does not appear in the above DE, then this equation can be reduced to a first
. dy dv d?y

order DE by lettin v=f(t)=— —=—
Y e O=% = dt ot
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P(t)dt —dt
g %+%v g (Linear DE) = yzej = u= eI =eR/m.
puv=[uQ(t)dt+C = eRUmy = jR“mgdHc
N VeRt/m:%eRt/m+C — y= mg+Ce—Rt/m
But v o Y_my +Ce ™™,
dt dt R
mC
y =mTS.t - retnic, (G.S)
Initial conditions (1.C);
—v'(0) = _mg 0 __mg
1- v(0)=y'(0)=0 = 0= R+C1e = Cl— =
mC mC —m?g
2- y0)=0 = 0=0-—1e’+C, = C,=—1 = C,=
R R RZ
y=Tg, M- -mg rum  —M°Q
R R R’ R2
2
or y :mTS.t - rlzg (L—eRmy, (P.S)

5- General Applications

Example: the population growth (P) at any time in a city is governed by the equation

%—Tz(B—D.P)P, where B and D are the birth and death rate, respectively. If

B=0.1, D=1x10""(t is in year), and P, =5000 person, find P as a function of time.

What is the limiting (maximum) value of population? At what time will be the
population equal to one half of the limiting value?

Solution:
‘Z—T =-(B-DP)P = ‘Z—T —~BP=-DP?.  (Bernoulli's equation)
Division by P? gives P‘z.(i—f ~-BP*'=-D.
Let z=P! = %:—P‘Zd—P = P_Zd—P=—%,
dt dt dt dt
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—% -Bz=-D = %+ B.z=D, (Linear DE with respect to z)
Bdt
PN L
pz={pQdt+C =N eBt.z:jeBt.DdHcl,
C
= et =D et ¢ = z=2+—1,
B 1 B g8t
C De® +CB
put z=pt=1 -, 1.b.=m L L
P P B eBt BeBt
Be® B
= P= [C=CB] or P= (G.S)
De®' +C ! D+Ce B
Initial conditions (1.C);
0.1

At t=0, P=5000 = 5000 = ,
1x10~ 7 + Ce~ %¥®

C =£—1><1O_7 -2x107°.
5000

P- 0.1 or  p__ 1000000 s
1x107 7 +2x10" % O 1+200e” **!

Max. population P occurs after a long period of time (i.e when t — ),
max

1000000 1000000

P = — P =——"""=1000000.
X1 900e- 04 mx  1+200x0
(Note; 01 —g==1 _1_0)
e” ®
1 1
When P= EP = P= 5 x 1000000 = 500000 Person,
max
500000 — 1000000 1420000t 1000000’
1+ 200e~ % 500000
= = 227_01 ~0.1t=In(5x107°) = -0.1t~-53,
t =53 year.
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4- Second and Higher Order Linear Ordinary
Differential Equations

Introduction
The general form of linear DE of order n may be written as:

n n-1
d Y ia d Yo +a ﬂJra y=9g(x), (a #0) .......... (1)
n an n-1 an_1 1dX 0 n

where;

a

a.,a ,..A are called the coefficients for the DE and they are, in general, as
functions of x,

g(x) is a function of x.

* |If the coefficients a,a ,..A areconstants, then Eq.(1) is called linear DE with
constant coefficients and if they are functions of x, then Eq.(1) is called linear DE

with variable coefficients.
*If g(x)=0, then Eq.(1) is called homogeneous linear DE, and if g(x)=0, then

Eq.(1) is called non-homogeneous linear DE.

Differential operator (D-operator)

A second standard form of Eq.(1) is based on the following notations:

2 n
ﬂ:Dy, M:Dzy, in general d Y —pry,
dx dx? dx"

where D is called the differential operator.
Thus, Eq.(1) can now be written as:

anD“y+an_1D”‘1y+ ......... +a Dy+a_ y=9(x),
n n-1 —
or (anD +an_1D F e .+alD+aO)y—g(x).

- 40 -



Engineering Analysis / Civil Eng. / 3™ Class Prepared by: Dr. Ahmed Sagban Saadoon

Superposition principle
Let AV RREIA be solutions of a linear DE of order n, then the linear

combination:

= <
y Cly1+C2y2+ ........ + Ckyk, k<n

iIs also a solution, where C ,C ,..... ,Ck are arbitrary constants.
1 2

Linear dependence and independence
A set of n functions AV REEIA Is said to be linearly dependent if there exist

n constants Cl,Cz, ..... ,Cn (not all zero) such that:

n
Cy+Cy, +....4Cy =0, or ZCiyi:O.
i=1
If no such constants can be found (i.e. do not exist), then the set of functions is said to
be linearly independent. For example:

* For the functions y, =3, y, = 2e2* and y,=e’%,

if we put Cl =2, C2 =-3, and C3 =0, then
Cy +Cy,+Cy, = 2(3e%) + (=3)(2e?*) + (0) (e *) =0.
Thus, Yo Y, and y, are linearly dependent.
* For the functions y, = e, y, = e*, and Y, =¥,
Cy +Cy,+Cy, =Ce *+Cpe* +C3e3X 0.

Thus, Yo Y, and y, are linearly independent.

Wronskian determinants

It is not always easy to check the linear dependence of a given set of functions

n
by searching for the value of the constants Ci which make ZCiyi =0. For this
i=1
purpose, Wronskian determinant may be used as an alternative method.
Lety,y,,...y are given functions to be checked for linear dependence, then

the Wronskian determinant is defined as,
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y1 y2 yn
yl y2 yn
WYY,y )= :
y1n—1 yn—l . y:—l

If w(yl,yz, ..... ,yn)=0,then AN AREmA are linearly dependent.
If w(yl,yz, ..... ,yn);to,then Y Y ey, are linearly independent.

For example, the Wronskian determinant for the functions y, = 2x2 and y,= -3x3 is,

2x%  —-3x°
4x  —9x°

Yy, Yy
Wy, Y= b= =[(2x2).(-9x2)]- [(-3x°).(4x)] = —6x".

1 2

Since W(yl,yz);tO,then y, and y, are linearly independent.

General solution of homogeneous linear DE

The general solution (complete solution) of any homogeneous linear DE of n™

order will be the linear combination of n linearly independent solutions
(yl,yz, ..... ,yn) for which w(yl,yz, ..... ,yn)¢o. Each linearly independent solution

contains one constant, therefore the general solution will be contain n constants.

Solution of homogeneous linear DE with constant coefficients

A second order homogeneous linear DE with constant coefficients can be

written as:
2
a.u+b.ﬂ+c.y:0 or (a.D? +b.D+c)y=0.
dx2  Ox
Let the solutionis y=e™ = y' =me™ = y" =m?%e™,

Substituting in the DE gives:
a.(m?e™)+b.(me™)+c(e™)=0 = e™(am®+bm+c)=0,

but e™ =0 = ..am®’+bm+c=0. (Auxiliary or characteristic equation)
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In practice it is obtained not by substituting y=e™ into the given DE and then
simplifying, but rather by equating to zero the operational coefficient of y and then
letting the symbol D plays the role of m, i.e. a.D? +b.D+c=0.

—b++/b* —4ac

1,2 2a

The roots m may be:
|

1- Real and unequal roots when (b? —4ac > 0),
m #m
1 2

m X

m X

Ly =e’ and y,=€?
m X m X
y:(jlyl-|-C2y2 — y:Cle 1 +C2e 2

2- Real and equal roots when (b? —4ac =0),

b
12 23

. _ _ aMmx
Ly =y, =e",
y= ClemX +C2emX =Ce™,
This could not be total solution because the DE is of the 2" order and there must be

two constants of integration. Thus, the solution y =Ce™ is considered as a part of the

solution and the total solution will be assumed as,
y= u(x).yl, where y, = e™.
y' :u.yi - yl.u’,
y" = u.yi’+ yl'.u’ + yl.u” + u'.yi = u.yi’+ 2u’.yi - u”.yl
Substituting in the DE gives
a(u.yi’+ 2u’.yi +u”.y1) +b(u.y£ +u'.y1)+c(u.y1) =0,
(ay1’+ byi + cyl)u + (2ayi + byl)u’ +ay u "=0.

But, ayi’+by£+cy1:0, (since Y, is a solution)

- 43 -



Engineering Analysis / Civil Eng. / 3™ Class

Prepared by

: Dr. Ahmed Sagban Saadoon

-b -b
and 2ay£+by1 = 2a(;—be 2a X)+b(e 2a X) =0,
a

.'.aylu”:o. But, a=0 and yl;tO,

su"=0 = u’:Cl = u:C1x+C2.

Ly=uy = (Clx+C2)emX.

3- Complex roots when (b? —4ac <0),

m :_ﬂi(i\/zlac—szi:aiﬂi,

1,2 2a \2a

ylze(‘“ﬁi)X and yZ:e(“‘ﬁi)X,

ny=Ael A L gele Ay e (A 4 Bem ).

But, e* ™ =cos /X * (sin AX)i, (Euler formula)

-y =e?[A{cosBX + (sin Bx)i}+ B{cosBx — (sin BX)i}],

= y=e”[(A+B)cospx + (A—B)(sin Sx)i],

= y:e“"(Clcos,&HCzsin,Bx).

Example 1: Solve  y"-3y'+2y=0.

Solution :

Using D-operator gives D?y —3Dy +2y=0

or (D

2_3D+2)y=0,

m? —3m+2=0, (Auxiliary or characteristic equation)
(m-)(m-2)=0 = Either m-1=0 = mlzl,

or m-2=0 = m2:2,
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2
Example 2: Solve dy + GQ +9y=0.
dx?  dx

Solution :

D?y+6Dy+9y=0 or (D*+6D+9)y=0,

m? +6m+9=0, (Auxiliary equation)
(M+3)(m+3)=0 = m=m=-3 = ylzyzze‘3x,
y=Ce x4 C xe~ * or y=(C +C x)e’ x, (G.S)

Example 3: Solve  y"—4y'+7y=0.

Solution :
(D> -4D+7)y=0 = .. m’—4m+7=0, (Auxiliary equation)
. —(—4)i\/(—4)2 —40)(7) 4+4-12
12 2(1) 2

4J—“£/Ei:2i\/§i, (=2 and B=+/3)

y=e”(C cospx+C sinfx) = y:eZX(Clcos\/§x+Czsin\/§x). (G.S)

Example 4: Solve  2y" —y"+36y'—18y =0.

Solution :
(2D* -D?* +36D -18)y =0 = 2m*-m?+36m-18=0,
2m(m? +18) - (m* +18)=0 =  (Mm*+18)(2m-1)=0,

Either 2m-1=0 = m1:

N |-

or m?+18=0 = m?=-18 = m =+/-18=+/18i=43V2i,

y=Ce¥2 4+ e(O)X(C2 cOS3/2x + C sin 3v2x),

1

or yzclex’2 +C cosB\/§x+C35in3\/§x. (G.S)
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Example 5: Solve  y"+7y"+11y'+5y=0.
Solution :
(D*+7D?+11D +5)y =0 = m® +7m? +11m +5=0.
By trial & error, if m=—1, then (-1)° + 7(-1)? +11(-1) +5=0,
m=-1 isaroot = (m+1) isa factor.

To find the other factor we use long division.

(Mm+2)(m? +6m+5)=0, M2 +6m+5
= (m+D)(m+(m+5)=0, m+1 >m3+7m2+11m+5
m=-1, m =-1, and m3:—5, m3 + m?
6m? +11m+5
y=C1e‘X+C2xe‘X+C3e‘5X, 6m2 + 6m
5m+5
or y:(C1+C2x).e‘X+C3e‘5X. (G.S) 5m +5
0
4 2
Example 6: Solve M+18u +81ly =0.
dx* dx?

Solution :
(D* +18D* +81)y =0 = m* +18m? +81=0.

(M?*+9)(Mm?*+9)=0 = Either m*+9=0 = le:J_r«/—9:J_r3i,
or m?+9=0 = m34=i\/—9:13i,

y =eOx (C cos3x+C_sin3x) + xe O (C,cos3x +C sin3x),

or y:(Cl +C3x)cos3x+ (C2 +C4x)sin 3X. (G.S)
d*y
Example 7: Solve  —=+4y=0.
dx*
Solution :

(D*+4)y=0 = m'+4=0 = m'=-4 = m’=£J/-4=42i
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Either m?=2i = mzziﬁ =N mlzziw/(1+i)2 = m=(1+i),

1,

o m==2i > m =+/-2i = m34=i\/(1—i)2 = m34=i(1—i)-

3,4
We can rearrange the roots as: m12 =1+i and m34 =-1+i,
y= eX(Clcosx + C2 sinx)+e” X(C3 COSX + C4 sin x). (G.9)
Note;
2
2 2
5 3

Example 8: Solve a7z _ 4E =0.

dt®  dt’
Solution :

(D°-4D%z=0 = m°-4m’=0 = m*(m*-4)=0,

either m*=0 = m =0,
1,2,3

oo m-4=0 = m’=4 = m45:i2,

or z=C +Ct+Ct’+Ce”+Ce %, (G.S)
1 2 3 4 5

Solution of non-homogeneous linear DE with constant coefficients

To find the general solution (complete solution) of a given non-homogeneous
linear DE, the following steps are followed:

1- We find a general solution for the corresponding homogeneous linear DE (i.e.
we putg(x) =0). This solution is called the homogeneous or complementary

solution, usually denoted by y,, which will contain n constants (where n is the

order of the given DE).
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2- We find a particular solution for the given nonhomogeneous linear DE. This
solution is called the particular solution, usually denoted by y,, which will be
free from constants.

3- The complete solution will be:

Y=Y+t Yy

There are different methods to find the particular solution.

1- Undetermined coefficients method

In this method we assume a trial solution containing unknown constants which
are to be determined by substitution in the given DE. The trial solution to be assumed
in each case depends on the special form of g(x).

g(x) Assumed trial solution y |
a A
ax" (n a positive integer) A+ AX+AX +..+ AX"
ae™ (m either real or complex) Ae™
acosax or asinax Acosax + Bsin ax
acoshax or asinhax Acoshax + Bsinh ax
ax"e™ (A, + AX+...+Ax")e™

(A, + AX+...+ A x")cosax

ax" cosax or ax"sinax .
+ (B, + BX+...+ B,x")sin ax

ae™cosax or ae™sinax (Acosax + Bsin ax)e™

[(A, + AX+...+ A x")cosax

+ (B, + B x+...+ B,x")sinax]e™

n,mx

ax"e™cosax or ax"e™sin ax

Note,

If any term of the assumed trial solution does appear in the complementary solution
(linearly dependent), we must multiply the trial solution by the smallest positive
integer power of x which is large enough so that none of the terms, which are then
present, appear in the complementary solution.

- 48 -



Engineering Analysis / Civil Eng. / 3™ Class Prepared by: Dr. Ahmed Sagban Saadoon

Example 1: Solve  y”"+ 2y’ +10y = 25x°.
Solution :
Step 1: Find the complementary solution vy,

(D? +2D +10)y =0 = m? +2m+10=0,

m __Zi\/22—4(1)(10)_—Zix/—36_—2i6i
12 2(1) 2 T2

=-1+3i,

y = e (C1 COS3X + C2 sin 3x).
Step 2: Find the particular solution y
Let yp:AO+A1x+A2x2 = y;:A1+2A2x = y'=2A,
Substituting y, and its derivatives in the given DE, yields
2A, +2(A +2A,X) +10(A, + A X+ Ax*) =25%,
(2A, +2A, +10A,) + (4A, +10A))Xx + (10A,)x? = 25x°

10Ax*=25x> = 10A,=25 = A, =g ,
A 4 5
4A, +10A)x=0 = 4A,+10A =0 = =——==——x—=-1,

5
—2A —2A —2(2)—2(—1) 3

2A, +2A +10A)=0 = A = iO L= 0 =10

3 5,
y =———X+—X".
p 10 2
Step 3: Find the complete solution v,

Y=Y +Yy, = y:e‘X(ClcOSSX+C25in3x)—%AO—x+gx2. (G.S)

Example 2: Solve  y"—2y"'—3y=5c0s2x —9.
Solution :
To find the complementary solution y_,

(D?-2D-3)y=0 = .. m?-2m-3=0,

(m+Y)(m-3)=0 = mlz—l and m2:
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y =Ce *+C e*.
c 1 2
To find the particular solution vy,

Let y = Acos2x+Bsin2x+C = y =
p p

= y" =—4Acos2x —4Bsin 2x,
p

Substituting,

—2Asin 2x + 2Bcos2x,

(—4Acos2x —4Bsin 2x) — 2(—2Asin 2x + 2B cos2x) —3(Acos2x + Bsin 2x+ C) =5c0s2x —9

(-7A—-4B)cos2x + (4A—-7B)sin 2x —3C =5c0s2x -9,

o (TA—-4B)cos2x=5c0s2x = —-T7TA-4B=5....(1),
(A4A-7B)sin2x=0 = 4A-7B=0 ...... Q) = A:—%

-3C=-9 = C=3.

y = —10052x — isin 2X+3
p 13
To find the complete solution v,

7 .
— _ - X 3x 0 =
Y=Y +Y, = y—Cle +C2e 13cost 13sm 2X+3.

Example 3: Solve  y"+2y'+y=e*sinx.

Solution :
(D? +2D+1)y=0 = m? +2m+1=0,
(m+)(m+1) =0 = m1:m2=—1,

_ - X - X _ - X
yC—Cle +C2xe or yc—(C1+C2x)e :
Let y =(Acosx+ Bsinx)e”,
p

y' =(Acosx + Bsin x)e* + (—Asin x + Bcosx)e”,
p

=(A+B)e"cosx+ (B — Ae”sinx,

y" =(A+ B)(—e”sin x +e*cosx) + (B — A)(e” cosx + e* sin x),
p

=2Be* cosx — 2Ae*sin x

Substituting,
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(2Be” cosx —2Ae* sin x) + 2[(A+ B)e* cosx + (B — A)e* sin x] + (Acosx + Bsin x)e* =e” sin x

(4B +3A)e” cosx + (—4A+3B)e*sin x =e”sin x,

(4B+3A)*cosx=0 = 4B+3A=0....(1),

(-4A+3B)e”sinx=e"sinx = 3B-4A=1...(2) = A:_ZiS&BZZ%

y = (—icosx + isin x)e*
p 25 25 '

_x 4 3 . X
y=Yy.+y, = y—(C1+C2x)e +(—£cosx+£smx)e. (G.S)

Example 4: Solve  (D® -5D?% —2D + 24)y = xe**.
Solution :
m?® —5m? — 2m+ 24 =0,
By trial & error, if m=-2, then (-2)* —5(-2)? —2(-2) +24=0,

. m=-2 isaroot = (m+2) isafactor.

Use long division to find the other factor,

) m? —7m+12
(m+2)(m* —7m+12) =0, m+ 2 >m3—5m2—2m+24
= (Mm+2)(m-3)(m-4)=0, m® + 2m?
= m1=—2, m2:3, and m3:4, —7m? —2m+ 24
—7m? —14m
y =Ce ®+Ce¥*+Ce™ 12m + 24
c ! 2 3 12m + 24
Let yp:(AO+A&x)e3x.x:(on+ALx2)e3x, 0

Y =3(AX+ AX2)e* + (A, +2Ax)e™,
=[A, + (3A, +2A)x+3A x*1e¥,
V! =3[A, + (BA, +2A)x+ 3AX?1e® +[3A, +2A +6Ax]e™,
=[(6A, +2A) + (9A, +12A)x +9A x*1e**,
Y =3[(6A, +2A) + (OA, +12A)x+ 9A X*1e¥ + (9A, +12A +18Ax)e™,

=[(27A, +18A) + (27 A, +54A)x + 27 A x*]e*

Substituting,
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[(27A, +18A) + (27T A, +54A)x+27 A X1 —5[(6A, +2A) + (9A, +12A )X +9A x*1e>*
—2[A, + (BA, +2A)X+3A X1 + 24(xA, + Ax*)e> =xe®,

[(-5A, +8A) + (-10A )x]e* = xe**,

~10Axe> =xe* = -10A=1 = A=-—

—8A g _1 4

=—x =
-5 5 10 25

~5A,+8A =0 = A=

4 1 2\A3X
=(——X——X")e"".
yp ( 25 )

10
y=Y.+y, = y=Ce 2 +C2e3X +C3e4X +(—2i5x—%x2)e3x,
or y=Ce X 4 ©, —%x—%xz)e“%x—%xz)e3X +C3e4x. (G.S)
Example 5: Solve  y"+ y=xsin X+ C0sX.
Solution :
(D? +1)y =0 = m’+1=0 = m’=-1 = m ==,

y = e(O)X(Clcosx +C _sinx)=C cosx+C sinx.
Let vy, =[(A, + Ax)cosx].x +[(B, + B;x)sin x].x + ch/osx + gfs{n X,
= A,XCOSX + By xsin X + A x* cosx + B x*sin x,
Y, =—A,Xsin X+ A, cosX + B xcosx + B, sin x — A X? sin X+ 2A Xc0sX + B,x* cOsX + 2B, xsin X

= A, CcOsX + By sin x + (2A + B,)xcosx + (—A, + 2B,)xsin x + B x> cosx — A x*sin x,

Yp =—A,sinx+ B cosx — (2A + B,)xsinx+ (2A + B,)cosx + (—A, + 2B, )Xcosx
+(=A, +2B,)sin x — B,x sin x + 2B xcosx — A x* cosx — 2A xsin x,

= (2A +2B,)cosx + (=2A, +2B,)sin x + (A, +4B,)xcosx + (—4A — B, )xsin x— A x* cosx — B,x? sin x
Substituting,

(2A, +2B,)CcosX + (—2A, +2B,)sin X + (A, +4B,)xcosx + (—4A, — B,)xsin x — A x* cosx — B x” sin X
+ A,XCOSX + Byxsin x + A x* cosx + B x? sin X = Xsin X + COSX,
(2A +2B;)cosx + (—2A, +2B,)sin X + 4B Xxcosx — 4 A Xsin X = Xsin X + COSX,

4B,xcosx=0 = B, =0,
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(=2A, +2B,)sinx=0 = A =B = A =0,

—4AXxsinx=xsinx = -4A =1 = Al:—%,

1-2A 4 o

(2A +2B,)cosx=cosx = 2A+2B,=1 = B,=— 1 1 2(21/4):%
y —§xsinx—1xzcosx
P4 4 '

Y=Y +Y, = yzclcosx+Czsinx+%xsinx—%x2cosx. (G.S)

2- VVariation of parameters method

In this method, the particular solution is assumed by replacing the arbitrary
constants Cl,Cz, ..... C , in the complementary solution, by functions of x, say
n

u,u,....u tobe determined later, that is
n
=UY +UY +....oou +U
yp 1y1 2y2 nyn’
where n is the order of the non-homogeneous linear DE to be solved. Then, the

assumed particular solution is substituted into the DE, and imposing conditions on
the resulting equation leads to the following equations:

ul'yl+u;y2+ ........ +ur’1yn:0,

uy +u’'y’ +........ +u'y =0’

1y1 2y2 nyn

7., N 1 -1 n-1

Uy THUY T +u'y' T =g(x),

or in matrix form:

y1 yz s yn ui 0
Y, oY, - Yo || | o
_yl”‘1 y;‘l . y”‘l_ u'| Lg%

The individual derivatives ui,u;, ..... u’ are found by solving the above matrix, then
n

by integration, the required functions u,u,..u are determined.
n
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Example 1: Solve  y"—y=¢".

Solution :

(D? -1)y=0 = m®-1=0 = m =+,

yczcle +C2e . (ylze and y2:e )

X

Let y =ue‘+ue”,
p 1 2

y, Y (jul [ o
Y. Y|\, {g(x)}

Using Cramer’s rule to solve the above matrix, gives

0 e

P e P ]G0 0 [ IO I S 3
e* e €)(e - e ittt -2 2
eX _pg X

u, :j%dx:%x.

Similarly,
e* 0
U’ — eX eX j— u' e (ex)(ex)_(o)(ex) :e2X :—lezx
2 o o 2 _2 -2 2
e* —e %
2X 1 2x
u, =|—=e““dx=-=e
2 =] 2
1 oun 1
=(=x)e* +(—=eT)e  =Zxe* — e
Y =X+ (e " =0 xet

1 1 X - X _ l X -X = _1
or y_(Cl—Z+§x)e +Cze _(C+2x)e +C2e : [C_C1 4] (G.9)
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Example 2: Solve  (D? +1)y =secx.

Solution :

m’+1=0 = m’=-1 = m =, (=0 and £=1)

y =C cosx+C sinx. (y =cosx and y =sinx)
c 1 2 1 2

Let y =u COSX+U SinX.
p 1 2

y, Y (ju| [ o cosx sinx|[u| [ 0
A | L A 16! —sinx cosx ||U’ [ [secx]’

Using Cramer’s rule to solve the above matrix, gives

0 sinx
SecX COSX
COsSX SinX
—SinX COSX

!

1

_ (sinx)( 1 ) _sinx
,__ (0)(cosx) —(sinx)(secx) cosx” __cosx __Sinx
Y (cosx)(cosx) — (siNX)(=SiNX)  ¢os? x + sin2 x 1 COSX

sin x
u, = [-=——dx=Incosx
COSX

Similarly,

COSX 0
—sinX Secx
CosX  sinx
—sinX CcosX

u, =

(08" )
Ul — (cosx)(secx) — (0)(=sinx) _ cosx” _4

2 1 1
u, = [(@)dx = x

y =(Incosx)cosx + (x)sin x=cosxIncosx + xsin x.
p

Y=Y +tYy,
y=C cosx+C sinx+cosxIncosx + xsin x
1 2

Or y= (C1 + Incosx)cosx + (C2 + X)sin X. (G.9)
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Solution of some linear DE with variable coefficients

There are some important linear DE with variable coefficients which can be
always reduced, by a suitable substitution, to linear DE with constant coefficients.

1- Euler-Cauchy equation

The general form of Euler-Cauchy equation is

n n-1
ax Y g Y, ax® g y=9(x),
N gx" n-1 dx" 1 1 dx 0

where a ,a yeeneen A are constants.
n n-1 0

For example, the DE (x*y” +3x?y” + Xy’ + 4y =cosx) is an Euler-Cauchy equation.

Euler-Cauchy equations can be always reduced to linear DE with constant

coefficients by the suitable substitution: z=Inx or x=e”.

d?y
Example 1: Solve  x*—2 -2y =x.
dx?
Solution :
Let z=Ihx (i.e. x=¢°) = gz _1
dx X
dy_dy oz _1dy
dx dz dx x dz
d’y 1,d%y dz, dy, -1 1 d%* d
o i e Gl

dxz_; dz2 dx° dz 2" g2 tg2 dz
Substituting,

Xz[i(d_zy_d_y

—-2y=¢’,
x* dz? dz] !
d?y dy , . . .
= —Z—E—Zy:e . (Non-homogeneous linear DE with constant coefficients)
dz

(D’-D-2)y=0 = m?-m-2=0,
(m+)(m-2)=0 = mlz—l and m =2,
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y =Ce ?+C e%
c 1 2

Let y =Ae’ = y' =Ae’ =y".
p p p

Substituting, Ae’ — Ae’ —2Ae’ =e* = -—-2Ae‘=e’ = A=-——,

) , 1
y=Y.+y, = y:C1eZ+CeZ—Ee.

2

Inx 2Inx 1 Inx

But z=Ihx = y=Ce ""+Ce ——e 7,
1 2 2
1
_ -1 2+
= y—Clx +C2x 2x. (G.S)
n §

Example 2: Solve vy + y =
X

Solution:

The given DE is linear DE with variable coefficients. Multiplying it by x* gives

X3y" +3x%y" =6x°. (Euler-Cauchy equation)
Let z=Inx (i.e. x=¢*) = QZE
dx x

L )——(d—y—j—y)
Z

dx2 x dz2 X' dz g2t g2 g2
d’y 1 d° dz d®y dz, d®y
2

-2
o o X g (E‘ o)

Substituting,
1 d3 d? d 1 d? d
[(ysyzy)lsl(yy)]esm
x> dz3 dz? x2 dz?2 0z
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3
= d_z/ — % =6e?”. (Non-homogeneous linear DE with constant coefficients)
dz z

(D*-D)y=0 = m®*-m=0 = m(mM*-1)=0 = m=0and m =1

z

y =C +Ce*+Ce ",
c 1 2 3

Let y =Ae” = y =2Ae? = y' =4Ae?? = y" =8Ae?
p p p 0

Substituting,  8Ae?* —2Ae* =6e* = 6Ae? =6e* = A=1
2z
=e??,
yp

z

— _ z - 2z
Y=Y +Y¥, = y—C1+C2e +C3e + e,

But z=Ihx = y=C +Ce"™ +Ce " 4™
1 2 3

= y:C1+C2x+C3x‘1+x2. (G.S)

2- Legender equation

The general form of Legender equation is,

n n-1
a (Ax+ B)nOI Yia  (Ax+ B)”_1u+ --------- +a (AX+ B)QJra y=9(x),
n dx” n-1 dx" 1 1 dx 0

where a ,a R A are constants.
n n 0

For example, the DE ((2x+1)°y" +2(2x+1)y’+4y =Inx) is a Legender equation.

Legender equations can be always reduced to linear DE with constant coefficients by

the suitable substitution: z=In(Ax+B) or Ax+B=¢g’.

Example 1: Solve  (x—2)%y"+2(x—2)y' —6y=0.

Solution :
Let z=In(x-2) (ie. x-2=¢*) = z_ 1
dx x-2
dy_dyde_ 1 dy
dx dz dx x-2 dz
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d’y 1 dzngrd_y( -1 - 1 d’y dy
dx?  X—=2 g2 dX' dz (x 22" (x_2)2 2 Uz
Substituting,

2
-2 (Y - Yy oot Y-ey -0
(x-2)% dz? dz X—2 dz
d?y dy : : -
— % e 6y =0. (Homogeneous linear DE with constant coefficients)
dz z

(D*’+D-6)y=0 = m?>+m-6=0,

(m+3)(m-2)=0 = m1=—3 and m =2

-3z

y=Ce +C2e22.
But Z= In(X — 2) — y = Cle_ 3In(x - 2) + Czezln(x -2)
= y=<:1(x—2)—3 +C (x— 2)%. (G.S)
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5- Applications on Second and Higher Order Linear
ODE

1. Deflection of beams

Differential equations of deflected shapes:

d?y \ > X
El.—=-M_, —— =
A’ X \> y
— x>
3
cv=Mo L m Yoy, ’
dx dx3 ; ?\
v d CUD C. ) )
-4 SELS Y _w
where;
+ —_

y is the deflection, M, , V,, and w, are the T l l T
bending moment (B.M), shear force (S.F),
and uniformly distributed load (U.D.L) at a SF
section at distance x, respectively, and El is *
the rigidity of the cross section of the beam. I
The following boundary conditions are stated according UD.L
to the supporting type,
* Hinge or pin or roller,

No deflection = y(0)=0. ; ;

No bending moment =  y"(0)=0. g D

y y

* Fixed or clamped,

No deflection = y(0)=0. —

No rotation = y'(0)=0. /y
* Free end,

No bending moment =  y”(0)=0. =

No shear force = y"(0)=0. y
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Example 1: A cantilever beam of length L is subjected to a concentrated load P at the
free end. Derive and solve the differential equation of the deflection curve of the
beam and also find the maximum deflection. (Neglect self weight)

Solution: P
A A 4
_ : ]
2 M p
el 9V wm,. * !
dx2 Q—) X
«— X > <« L-Xx—
M, =—P(L-X), VaVy
2
e1.9Y _ p-xy,
dx?

To determine M., :

d’y P Either from left;
or Q—E(L—X)- M, =V, X—M,.
F, =0,
Method I, 2.y

P-V,=0 = V,=P.
Since the right side terms are functions of x only, we 3 (M), =0,

can solve the DE by integrating both sides directly, M,-PL=0=M,=PL.
M, =Px-PL
dy P x? x
H_"x-Xyic, =—P(L-X).
dx ElI 2 1 .
Or from right;
P Lx* x° M, =—P(L-x).
=—(—-—)+Cx+C . G.S
y=5, 6) X+C (G.5)
Method II,

We can solve the DE as a non-homogeneous linear DE,

D’y=0 = m’=0 = m12=0,

yc =C1x+C2.
Let y =(A+AXX =y =AxX*+AX,
p p

y' =2Ax+3AX* =y =2A +6AX,
p p
Substituting,

P PL Px
2A +6AX=—(L—-X = 2A +B6AX=— ——,
A, +6A EI( ) A, +6A el El
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2A0:% = Aoz%,
6@:—% = Al:_6_|l;’
Y, :2PEL| < _6II:—Z)I ngg(LTXZ_Xg)'
y=Y.+Y, = y:Clx+C2+g(LTXZ—X§). (G.S)

Boundary conditions,
1- y(0)=0 = O:O+C2+O = C =0.

2
2- y'(0)=0 '=C +£(Lx—x—2) = 0=C+0 = C =0
YOI=s Y= T 2 ! 1

P Lx> X3 Px?
L = (BL-x). P.S
y EI(2 6) y 6EI( ) (P.S)

Maximum deflection of cantilever beams occurs at the free end, that isat x=1L,

P(L)? PL®
= 3AL-L)=—.
Y ex 6EI ( ) 3EI

Example 2: Find the deflection curve and the reactions for the beam shown below.
(Neglect self weight)

) w
Solution: 1
d4y A;v; L sR B
El.—4=WX. Here w, =w W Mg

dx YUY
d*y d'y w T — x> l

El.—"=w or —"=—" Va¥y Ve
dx dx El

(Statically indeterminate)

Integrating both sides directly gives,

3 2 2

ay _wx ¢ - a7y _WX" e xec

dx® El 1 dx? 2El 1 2
3 C 2 4 C 3 C 2

dy_wx” X e xic = y=2 it 2o

= + +C x+C . (G.S)
dx 6El 2 2 3 24EI 6 3 4
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Boundary conditions,

1- y(0)=0 = O=O+C4 = C4=O.
2- y"(0)=0 = O:O+C2 = C2:O.
wlt c L
3- y(L)=0 = 1 yCL. ... 1
y(L) = el 6 ; (1)
wl® CL?
4- y'(L)=0 O=—+—2—+C. ... 2
y'(L) = T ; (2)
Solving Egs. (1) & (2) simultaneously yields,
_ 3w _
1 8EI 3 48El
4 3 3
y= WX _WLx +WLX. (P.S)
24E1 16El 48EI
3wL, 3wL
V =—ElI(y") =-EN"(0)=-ElI(—)=——.
W =B, =B (0) =—El(- =5 == (H
wL 3wL 5wL
V =-EI(y") =-EN"(L)=-ElI(—-—")=—""-7"
=B, =B (D) =-El(C - o) =—"" (1)
wL?  3wlL? wlL?
M =-EI(y") =-Ely"(L)=-EI — =— .
=B, =B (=Bl —" )= ()

Note,

We can solve the above 4" order DE as a non-homogeneous linear DE, as follows

D'y=0 = m'=0 = m =0,
1,2,3,4
Y :C1+C2x+C3x2 +C4x3.
Let y =AKXY) = y =AXx%,
p p
y =4AX = ' =12AX% =  y"=24Ax = y"=24A,,
p p p p
Substituting,
4
W W WX
TR R YT=r Yo = 24l
2 3 ‘
y=Y.+y, = .'.y:C1+C2x+C3x +C4x +24EI' (G.S)
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2. Buckling of columns

Example 1: Determine the critical buckling

ol

je——T

H
load of a hinged-hinged column. B —
Solution: |
Consider a column of length L, as shown L L A l‘;
in Fig.(a) or Fig.(b), hinged at both ends, and s y,’,i}
subjected to a compressive axial force P. X
SElR
d2y A ZE A ZE
El.—=-M,. But M, =P.y, : :
dXZ Flg(a) Flg(b) VA
2 2
EI.M:—P.y = M+£y:0. To determine M, :
dx’ dx? El Either from down (left);
, P d2y - M, =V,.y+H,.X.
R o PP 2.Fx=0,
. , V,-P=0 = V,=P.
or (D°+pB89)y=0 = m°+p°=0, >F, =0,
= m’=-p*> = rﬂz:iﬂ’ Hg-H,=0 = H,=H;.
—C C sinp G.S 2.(M)s =0,
y= 1cosﬂ’x+ 2smﬂ’x. (G.S) H,L=0=H, =0,
Boundary conditions, - Hg =0.
1. y(0)=0 = O:C1+O = C1=O. M, =Py.
=C sin . Or from up (right);
y=5, > _ M, =P.y—Hg.(L-X)
2.y(L)=0 = O:C23|nﬂL. ~P.y
If C2 =0 = y=0.
(i.e. the column remains straight)
) CZ;tO = sinpL=0 = pAL=0,72nx,..... nr,
Cfl=nz = ﬂ:”T” (n=123,....)
2_2 2_2
But ﬁz—i P _nz - P:nﬂ'E|
El K K
2
For n=1 = P, = d IZEL, (Euler load or critical load)
L

and y= C2 sin % (C2 remains indeterminate, that is y(%) = Cz)
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n=1 n=2 n=3
2 2 2
P 7z EL P :47r EL P :97z EL
2 2 2
L L L

Critical buckling load: is the smallest value of axial load that can cause buckling.

*If P<P,, then the case is “stable equilibrium”. In this case, no buckling would

occur. If lateral deflection is produced, by a horizontal force, then this deflection
vanishes when the horizontal force is removed.
*If P=P,, then the case is “neutral equilibrium”. In this case, small and limited

buckling may occur. If lateral deflection is produced, by a horizontal force, then this
deflection remains constant even when the horizontal force is removed.
*If P>P

cr?

buckling may occur. If lateral deflection is produced, by a horizontal force, then this

then the case is “unstable equilibrium”. In this case, large not-controlled

deflection will be increased, and if not controlled, the column will collapse.

Example 2: Determine the critical buckling load P « =)
of a fixed-free column. l ‘<— d —>l
Solution: e
Let the buckling at the free end is (d). %-"—
2 L
89Y__M.  But M, —-P@d-y),
dx? X
d? d’y P P AV Y
SELSY —pd-y)] = Y Py Py VI >
dx® dx? EI" El
P d? o
Let f%=— = —y+,82y=ﬁ2d,
El dX2
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or (D*+p%)y=pd =
= m=-p5 = m =+fi,

y :Clcosﬂ><+C23inﬂx.
Let y =A = Yy =y"=0.
p p p

Substituting,
0+p°A=p5d = A=d = vy =d.
p

Y=Y+ Yp

.'.yzclcos,b’x+Czsin,[5’x+d. (G.S5)

Boundary conditions,

1. y(0)=0 = O:C1+d = Clz—d.
.'.y:—dcosﬁx+Czsinﬁx+d.
2. y'(0)=0,

s y=—-dcospx+d or

To determine M :

Either from up (right);

M, =—P(d -vy).

Or from down (left);

M, =V, y+Hx—M,.

> F =0,

V,-P=0 = V,=P.

> Fy=0,

-H,=0 = H,=0.

Z(M)AZO’

M,-Pd=0 = M, =Pd.

~.M,=Py—Pd
=—P(d-vy).

y':_ﬁclsinﬂ)<+ﬁczcosﬂ>( = 0:0+Ig(32 — szO'
y=d(@—-cos/pX).

3. y(L)=d = d=d(@—-cospL) = 1=1-cospL,
7w 37w 2n-Dr
cosfL=0 = — . , ,
= =0 = A=55 2
@2n-r 2n-x
. — = :1,2,3, .....
AL > B="—5 ( )
2 _2 2 _2
BUt 52—3 P_(2n-1)°x Pcr:(Zn—l) 7 EL
El El 412 41°
7°EL . 1 . . : .
For n=1 = P, = - (i.e. 1 times the critical load for hinged-hinged case)
4L

3. Deflection of beam-columns

Example 1: A simply supported beam-column of length L is subjected to a
concentrated load Q at midspan and an axial compressive force P as shown in the
figure below. Derive and solve the differential equation of the deflection curve. Then
find the max. deflection and max. bending moment. Ql

(Neglect self weight) 1

—
£ %
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Solution: Q
d?y Ha, . l P
EI.—:_MX. V“\ - /'I‘
dX2 V «.y ______ TV
Q Al— x > B
E|.d_2y:_[QXJr Py], To detern.wine M,:
dx? 2 From left;
M, =V, X+ Hpy.
2 X A A
= u+£3’= 2y (0<x<L/2)
dx? El 2EI SE -0
Let 52:ﬂ — d ,By——& | H,-P=0 = H,=P.
- dx’ 2EI > (M)s =0,
L Q
or (D%+ B2 )y=—_%_ Q X = m’+ Q=-V,L=0 =V, ==
D7+ 5y =—-F, B = >V =
Q
2 _ 2 o Y
= m ——ﬂ = mllz—iﬂl, x=5 y

y :Clcos,Bx+Czsinﬁx.

lety =A+AX = Yy =A = Yy =0.
p p p

Substituting,

0+ B2 (A, + AX) ==L,
FA=0 = A=0.
Q . Q Q
Ph=—2r = A~ 25°El 2P
__Q
yp_ ZPX

y=Y.+Yy, = yzclcosﬁx+Czsin,8x—%x. (0<x<L/2) (G.9)

Boundary conditions,
1. y(0)=0 = O:Cl+0 = C =0.

1
2 Y(LID=0,  y'=—fC sinfx+fC cosx—-2,
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Q Q
0=0+pC cospL/2—— C = :
- vpCcospizn g = 2~ 2PBcospL/2

Ly= Q sinﬂx—gx or y= Q sin X - X |. (P.S)
2PpcospL/?2 2P 2P\ pcospL/2
From symmetry, max. deflection occurs at midspan (i.e. at x=_L/2),
_Q sinpL/2 L) _QL tanﬁL/Z_1
mx 2P\ fcospL/2 2 pLi2 '

Y

Since M, :%x+ Py , thus max. B.M occurs at midspan (i.e. at x=_L/2),

Mo QL b :QL+P{QL[tan,BL/Z_lﬂthan,BL/Z.
22 pLI2 2p8

mx 4

Example 2: Find the deflection equation.

Solution: W
P
d? "% L |
SRSV
dx?
Let the deflection at the free end is (d). Ma
H AV VY VY YTV
M, ==P(d = y) =2 (L=X)", " (L e
2 v X T |d
2 Ay —
T B A TR I} <z P
dx? 2
_ d_2y+£y_P_d i(L 97, Todet(?rmine M,:
4  El El | 2EI From right; y
M, =—P(d — y) ——(L — x)°.
P d?y W x
Let f?=— —2 4+ By = p%d +—(L—x)?, 2
Brogr = o tFy=Fae g 0
or (D% + 2)y=p2d + = (L—x)?,

2EI
= m+4°=0 = m=-p* = mm:iﬂi,
yczclcos,Bx+Czsinﬁx.
Let yp:A0+Alx+A2x2 = Y =AT2AX = Y =2A,
Substituting,
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2A2+ﬁ2(AO+A1x+A2x2):,82d+2—V|;II(L2—2LX+X2),
.ﬂZAZ:i ~ A= wo_w

2El 2ﬂ2E| ZP’
wL wL wL
ﬂ Al___ - Al:— 5 = — ;
p*El P
2 2 2A 2
2A2+,82A\)—,82d+\;v—||5‘|:> A, =d+ WIZ‘ — 22 = :d+%— \/2v
2B°El B BP
wkr  w owkx  wx?
y =d+ - -
p 2P ﬂZP P 2P
—d+ 22— 2Lx+x)—— w_
2P ﬂ P 2P ,BZP
y=Y.+y, = y= Ccosﬂx+C sm,Bx+d+—(L X)? —i. (G.S)
L°P
Boundary conditions,
2 2
1Ly©0=0 = 0=C WwLo__w g W
ﬁZP 1 2P ﬂ P

2. y'(0)=0, y':—ﬁclsin,b’x+,8C cosﬁX—VEV(L—x),

- OO,BC—W—L — ¢ -

> P
2
y=|-— wL cosﬂx+( Ljsmﬁx+d+—(L x)? —ﬂ. (P.S)
2P p2p pP [P
To find the max. deflection (i.e. deflection at the free end):
2
y(L)=d = d= wL cos,BL+[ )smﬁL+d+0—
2P p?p PP B

wlL?

= dcospL = _F}COSﬂLJ{ﬂ PJ(COS,BL 1)+ (ﬂ:;jsinﬂL,

= d= [ﬂ I:J(l sec L)+ (,BPJ ﬂL—W—L2

_wl? (1—sec,BL fanAL _Ej
(AL)? pL o 2)
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Example 3: For the shown beam-column, derive and solve the differential equation

of the deflection curve. (Neglect self weight)

Solution:
2
.9Y_m
dx?
3
But M =9 _p, &
6 6L
d?y  _gLx gx®
El.— === _py-1],
dx? 6 6L
dy_P,_ 0’ g
dx2 El~ 6LEl 6EI
2
Let ,62:i =N d——ﬂ LS q_Lx
El 42 ~ 6LEI 6EI
Lx
or (D?- _ 9 ax m? - 2 =0,
(0% =A%)y 6LEI 6El o
= m=4 = m_=ip,

y =Ce™+Ce
c 1 2
Let vy =A +AX+AX +AX,
p

=y =A+2AX+3AX° = y" =2A, + 6AX.
p p
Substituting,

2A, +6AX— B2(A, + AX+AX> + AX) =

6LEl

- _ﬂz%zi = A=- q

q
P vy | l
<+—]
A\ L
7777777
A B
Ox
P ;Y . Hs
A o y T
Vale x b Ve
Yy
To determine M :
From left;
1 X
M, =V, Xx-Py——q .X.—.
X A y qu 3
Z(M)B:O’
1 L gL
—gL=-V,L=0 =V,=—.
2037 VA A6
q
9% o g 8%
L x L
MX:q—L.x Py—l.ﬂ.x.Z
6 2 L 3
_gbx o, ax’
6 6L
alx
6EI "’
~q
6LP’
6A3:q_|__ q

6LEI 6L,32E|
-p*A,=0 = A,=0,
gL
6A, —f°A =~ 6E| 657
2A
2A, - B*A, =0 = A =—2=0.
,82

ﬁ2 6P L,BZP’




Engineering Analysis / Civil Eng. / 3™ Class Prepared by: Dr. Ahmed Sagban Saadoon

y = . q w__d 3
p 6P LﬂZP 6LP

X ~ L q q .3
-V + =Ce”+Ce ”+ @__ a9 X———X°. G.S
Y=Y.+Y, = Y ) ) (6P ] ZP] 6LP (G.S)

Boundary conditions,
1. y(0)=0 = O:C1+C2+0 = C =-C.

2 2
2.y(L)=0 = 0=Ce™+C e"BL+qL — ‘2‘ _a :
1 2 6P p°P 6P

= C = g

= CE"-eM)= = .
! LoptPEe?* —e M)

9
p’P

y = g ol _ q I R N RN RV
ﬂZP(eﬂL_e—ﬁL) ﬁZP(eﬂL_e—ﬁL) 6P LﬁZP 6LP

P _ o B o amo
_ At ) kA 4 sinho =2 "¢
ﬂZP(eﬂL_e—ﬂL) 6P LﬂZP 6LP 2
. q sinh/»<+ﬂ2|_x_5_/32x3 (P.S)
B°P|lsinhpl 6 L 6L | '
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4. Simple Vibration

Any system having mass and elasticity can vibrate when it is subjected to an
exciting force. The study of a vibrated system requires determination of displacement
of each point in that system. In continuous bodies, there is an infinite number of these
points, thus the analysis is very complicated. So that, simplifications are used by
considering only a limited number of these points, each point may have motion in
one, two, or three directions and rotation about one, two, or three axes. Each
component of these motions is known as the degree of freedom ‘DOF’. So that, each
point may have one to six DOF. The DOF of the whole system is the sum of the
degrees of freedom for all considered points.

* Free vibration: is the vibration that occurs in the absence of exciting forces. This
vibration is usually caused by an initial displacement and/or initial
velocity.

* Forced vibration: is the vibration that occurs due to the effect of an exciting force.

* Undamped vibration: When the motion is not subjected to a counter effect, such
as friction or air resistance. In this case, the kinetic energy is constant

and the amplitude of motion remains unchanged.

* Damped vibration: When the motion is subjected to a counter effect. In this case,
the kinetic energy is dissipated during motion and the amplitude is
reduced with time. Actually, all systems must have some damping.

Free vibration

Undamped free vibration

Systems having single DOF can be represented by a spring-mass system as
shown in the figure below.
Case I: Static;

A mass m is attached to a spring of stiffness k. At equilibrium:
>F=0 = W-P=0 = W=P = W=kA.
k= w = k="9 :
A A

Case Il: Dynamic;

If the mass oscillates due to an initial displacement or velocity, then at any time t:
=72 -
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k
Equilibrium position
O N - S
m [y
P T kKA P=k(A+Y)
m m
W W
Case I: Static Case I1: Dynamic

Y>Fy=ma = W-P=ma =  W-k(A+y)=my,
= W — kA —ky=m.y = m.y + ky=0,

— y+£y:O.
m

Let a)Z:% = V+w’y=0 or (D*+w?)y=0,
= r’+w?=0 = r’=—ew* = I‘L2 =+,
o y=Acosat + Bsinat . (Simple harmonic motion)
Initial conditions, A
At t=0, y=y, and V=y=V,. B
To find the amplitude of motion, cosa=B/C,
Let A%?+B?=C2. Sina:ilc’
a=tan" ~(A/B),
yzc(écosa)t +§sin a)tj, L=tan ' (B/A).

= y=C(sinacosat +cosasinat) = y=Csin(at+a),
or y:C(écosa)Hgsina)t),

= y=C(cospcosat +sin gsinat) = y=Ccos(at-p),
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where,
C is the amplitude of motion. (m)
a and S are the phase angles (shifting angles) (a¢+ f=7x/2). (rad)

@ s the circular or angular frequency — wz\/%. (rad/s)

f is the natural frequency — fzzﬁ. (cycle/s=hertz)
T

T is the period of motion (i.e. the time required to complete one circle of motion)

2r 1
T="2= (s
o f
y
T
tanf=vo | .
é
Yo ‘I." C C
‘ t
e \
a|p
o @
T=27lw

Example: A mass of 4 kg is attached to a spring of 1.6 kN/m stiffness. The mass is
pulled down with a velocity of 0.6 m/s and released at 4 cm below the equilibrium
position. Find the equation of motion, angular frequency, natural frequency, period of
motion, and amplitude of motion (maximum displacement). Then, find the minimum
time at which the mass passes through the equilibrium position.

Solution:

The case is undamped free vibration,

m.y +ky=0 = y+%y:0.

3
2 :1-6X10 =400 = w=20rad/s. (Angular frequency)

k
— = W
m

y+400y=0 or (D?+400)y=0,
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=  r?2+400=0 = r?=-400 = rlZ:iZOi,

y = Acos20t + Bsin 20t . (G.S)
Initial conditions,

1. y(0) =+0.04m = 0.04=A+0 = A=0.04.
2. v(0)=y(0)=+0.6m/s, y=-20Asin20t+20Bcos20t,
= 06=0+20B = B =0.03.

y =0.04c0s20t + 0.03sin 20t . (P.S)
-9 20 =3.183 Hz. (Natural frequency)
2r 21
2r 1 . .
T :—:?:0.3143. (Period of motion)
w
C= J A% +B? = Jo.042 +0.03% =0.05 m. (Amplitude of motion)

The mass passes through the equilibrium position when y =0,

a =tan"*(A/B)=tan"'(0.04/0.03) =0.9273 rad,
-y =Csin(at + ) =0.05sin(20t + 0.9273).
At y=0 = 0=0.05sin(20t+0.9273) =  sin(20t +0.9273) =0,

either 20t +0.9273=0 = t=-0.046, (neglected)
or 20t +0.9273=r = t=0.1107 s.

Damped free vibration

In all vibrating system there is some energy dissipation (damping). So that, the
amplitude of motion decreases with time until vanishes. Viscous damping is assumed
to be proportional with velocity,

Viscous damping Dcv = D=cv = D=y,

where c is the damping constant or the damping coefficient (N.s/m).
In the dynamic case;

>F,=ma = W-P-D=ma = W-k(A+y)—-cy=my,

= W —kA —ky—-cy=m.y.

But, from static case W =kA = —ky—cy=m.y,
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k
Equilibrium position
B 3 N - S
m Iy
P = kA | |— Dash-pot

m 7777777
l D=cy P=k(A+Y)
W

11

m
W
my+cy+ky=0 or  (mD?+cD+k)y=0,

—c+vc? —4km

mr’+cr+k=0 = r =

1,2 2m
Case1; When c¢*—-4km=0 =  c=2/km=C, (Critical damping)
r=r=—% = y=Ae @2 L Bte™?™  (No oscillations)
1 2 2m

Case2; When c¢*—-4km>0 = c>2/km (i.e.c>c,), (Overdamping)

rlt rzt

r#r = y=Ae" +Be?, (No oscillations)

1

Case3; When c¢*-4km<0 = c<2Jkm (ie.c<c,), (Underdamping)

) _—civ4km-cfi ¢ 4km—c2i
12 2m 2m \  am?

y=e"*"(Acoswyt + Bsin pt), (Oscillations occur)

—ct/2m

or y=Ce sin(opt + ),

or y=Ce *"cos(wpt - ),
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\/4km—c2 \/ \/7/ \/
where, oy=.,—— = |———"— __-
Am? m  4m2 4km (2\/_)

Y T

(Cor)”

where, A= CL IS the damping ratio.

cr

* In almost all cases, the state is under damping.
* For structures, ¢ =(0.02-0.2)c,,.

Under damping

Crltlcal damping
Over damping

Example: A 10 kg mass is attached to a 1.5 m long spring. At equilibrium, the spring
measures 2.481 m. If the mass is pushed up and released from rest at 0.2 m above the
equilibrium position, find the displacement as a function of time, critical damping
constant, natural frequency, and period of motion. (Assume the damping coefficient
c =20 N.s/m).
Solution:
The case is damped free vibration,
. my+cy+ky=0,
W _mg _ 10x9.81
A A  (2.481-1.5)

. 10y +20y+100y=0 or  (10D?+20D +100)y =0,

=100 N/m,

—20+ 2 _
-, 10r? +20r +100=0 = r = 20+ \/20 4(10)(L00) =-1+3i,
12 2(10)

y=e"(Acos3t + Bsin3t). (Under damping) (G.S)
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Initial conditions,
1. y(0)=-0.2m = —0.2=A+0 = A=-0.2.

2.v(0)=y(0)=0, y=e"(-3Asin3t+3Bcos3t)—e ' (Acos3t+ Bsin3at),
= 0=0+3B-(A+0) = B=A/3=-0.2/3.

y:e‘t(—0.20053t—o;32sin3t) or y:—%e‘t(30053t+sin3t). (P.S)

Co = 2+/km=2y100x10 =63.25 N.s/m. (Critical damping)
@ 3
f=—B="=0477 Hz (Natural frequency)
27 21
T= 2r = % =2.09s. (Period of motion)
@

D

Forced vibration
Undamped forced vibration

In the dynamic case;
YFy=ma = F+W-P=ma = F+W —-k(A+y)=m.y,

= F+W —kA—ky=m.y.
But, from staticcase W =kA = F-ky=my = my+ky=F.

Equilibrium position

P=k(A+Y)

'
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Damped forced vibration

In the dynamic case;
Y>Fy=ma = F+W-P-D=ma = F+W-k(A+y)-cy=my,
= F+W —kA—-ky—cy=m.y.

But, fromstaticcase W =kA = F-ky—-cy=my = my+cy+ky=F.

Equilibrium position

KA |£“’ Dash-pot

s

chyT TP:k(A+ y)

S <«— 3 —»I

m
e
Example 1: A 5 kg mass is connected to a spring of 8.5 kN/m stiffness and subjected
to an exciting dynamic force of 50cos30t kN. Assuming the viscous damping
coefficient is 24% of the critical damping, determine the equation of motion of the
mass. (Initial displacement and velocity are zero)

Solution:
The case is damped forced vibration,
~ my+cy+ky=F,
c,, =2/km=2/8.5x1000x5 =412.3 N.s/m,
c=0.24c,, =0.24x412.3~100 N.s/m,
. 5y +100y + 8500y =50000c0s30t or (5D% +100D +8500)y =50000c0s30t,

_ + 2 _
. 5r* +100r +8500=0 = ro= 100+ \/102 B 4)(E00) _ —10+ 40i,

y =e % (Acos40t + Bsin 40t).

c
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Let y =C,cos30t+C,sin30t,
p

= y =-30C;sin30t +30C,cos30t = § =-900C, cos30t—900C, sin30t.
p p

Substituting,
5(—900C, cos30t —900C, sin 30t) +100(-30C, sin 30t + 30C, cos30t) +

8500(C, cos30t + C, sin 30t) = 50000c0s30t,
(4000C, +3000C, ) cos30t + (—3000C, +4000C, )sin 30t = 50000c0s30t,
. 4000C, +3000C, =50000 ... (1)
—-3000C, +4000C,=0 ... (2)
Solving Egs. (1) & (2) simultaneously yields, C,=8 and C,=6.

y =8c0s30t + 6sin 30t .
p

y=Yy.+Y, = y=e""(Acos40t+ Bsin40t)+8cos30t +6sin30t. (G.S)
Initial conditions,

1.y0)=0 = 0=A+0+8+0 = A=-8.
2. v(0)=y(0)=0,
y =e % (~40Asin 40t + 40B cos40t) —10e ** (Acos40t + Bsin 40t) —
30(8)sin 30t + 30(6) cos30t,
— 0=0+40B—10(A+0)—0+180 SN B=-65.
y =e 1% (—8c0s40t — 6.5sin 40t) + 8c0s30t + 6sin 30t ,
or y=—e"%"(8cos40t + 6.5sin 40t) + 8cos30t + 6sin 30t . (P.S)

Example 2: Find the equation of motion for a system subjected to the external force
Fsino,t. (Neglect damping)

Solution:
The case is undamped forced vibration,

. my+ky=Fsinw,t = y+£y:Esina)ft.
m- m
Let 2= = y+a)2y:Esina)ft,
m m
(D*+0®)y=0 = r’+0°=0 = r‘=—w* = 1 =zaoi,

y = Acosat + Bsinat.
C
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Let y =C cosw;t+C,sinw;t,
p
= y =-w,Csihot+w,C,cosm,t = § =-w:C coswt-a:C,sinw.t.
p p

Substituting,
i . F .
—cofClcoswft—a)fczsma)ft+a)2(Clcoswft+C25|na)ft):asma)ft,
: F .
—@?’C. + w?C.)cosw,t + (—~w>C., + @’C.)sinw,t =—sinw.t,
f~1 1 f f~2 2 f f
m

~02C,+w’C,=0 = (-0f+0°)C,=0 = C =0,

—a)?C2+a)2C2:E = (—a)$+a)2)C2:E = ngé,
m m m(w® —a)f)
F :
y =———sinw;,t.
P m(w? —a)f)
i F i
y=Y.+y, = Yy=Acosat+Bsinot+——sinot. (G.S)
m(w? —a)f)

Notes,
*If o >w,then y—>o0, (Resonance)

*If o, =w,then y=Acosat + Bsin a)t—zitcoswt.
o)

(i.e. solution increases in amplitude as t increases)

/N t

S v \
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Vibration of structures
Example 1: A mass m is put on the end of a cantilever beam, of negligible mass, as
shown below. Determine the natural frequency of this system.

Solution : L
Let the deflection at the free end is A.
The deflection at the free end due to a
tip concentrated load P is, 4 B
T ]
3 . |A
APt LY
3EI
The stiffness for a single DOF system,
k=" o P BB
A PL3/3EI L3
k 3EI
w=.— = = [—,
m mL3
272' 272' mL3
Notes,
* The values of k for various cases are as shown below.
L2 l L/2 l L/2 l
k = 48E1 / ® k =192EI / k =107.33E1 /L3

Vil il

k=12EI /13
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* The equivalent stiffness for “in series” connection is, 2
A=A +A, / a K
P P P
—_— + —
Keg ki Ky
1. 1.1
Keg ki Ky

* The equivalent stiffness for “in parallel” connection is,
P=P+P,
KegA =K, A+K,A
Keq =K, +K,.

ko

ke

Example 2: Determine the natural frequency of the system shown in the figure. The

beam is of negligible mass. Given m=25 kg, E =200 GPa, | =5x10"'m*,

and Kgpng =5 KN/m. El
Solution: 4m I
The stiffness for a cantilever beam subjected to a
m
tip concentrated load is,
9 -7
Kyour = SElL Koo = 3(200x107)5x10" 1) _ 4657.5 Nim.
3 43
1 = 1 + 1 = 1 = L + L = keq:2419.4 N/m.
k k k k 4687.5 5000
eq beam spring eq
= LS = w=| 2419.4 =9.837 rad/s.
m 25
f=2 — =283 1566 He
27 27

Example 3: Assuming the damping ratio is equal to 0.1 and neglecting self weights
of all members, find the equation of motion of the frame, shown in the figure, under
the action of the exciting dynamic force. The initial displacement and velocity are

zero. For columns, take EI =60 kN/m? and k =3E1/L5.
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Solution:

10 kg/m
The case is damped forced vibration, 10 Colfl\f’t
. my+cy+ky=F. 4m
2m
m=10x4=40 kg.
4m TR
keq = kcolumr‘l + k(:olumer
3EI 3El
=l 5 + — ~
L columrl L columr2
3 3
_ 3(60x107) N 3(60x107) _ 253125 N/m.
43 23
Cor = 2/km=2/25312.5x 40 = 2012.46 N.s/m.
But, 1= £ _01 — ¢=0.1c, =0.1x2012.46 = 201.246 N.s/m.
C

cr

. 40§ +201.246Y + 25312.5y =10 x10° cos3t,

or  +5.03y+632813y=250c0s3t = (D?+5.03D +632.813)y = 250c0s3t.

—5.03++/5.03% — 4(632.81 .
T 503 +632813-05 1 =0 J‘r’oe’z (632813) _ _, 515+ 25,0,

y =e ¥ (Ac0s25.03t + Bsin 25.03t).
c

Let y =C,cos3t+C,sin3t,
p

= yp:—3C13in3t+3C2c033t = yp:—9C1c053t—9C25in3t.

Substituting,
—9C, cos3t —9C, sin3t +5.03(-3C, sin 3t + 3C, cos3t) +

632.813(C, cos3t + C, sin3t) = 250cos3t,
(623.813C, +15.09C,)cos3t + (—15.09C, + 623.813C, )sin 3t = 250c0s3t,
. 623.813C, +15.09C, =250 ... (1)
-15.09C, +623.813C,=0 ... (2)

Solving Egs. (1) & (2) simultaneously yields, C,~0.4 and C,~0.01.
-84 -



Engineering Analysis / Civil Eng. / 3™ Class Prepared by: Dr. Ahmed Sagban Saadoon

y =0.4cos3t + 0.01sin 3t.
p

y=Y.+Y, = y=e2""%(Acos25.03t + Bsin 25.03t) + 0.4cos3t + 0.01sin3t. (G.S)

Initial conditions,
1. y(0)=0 = 0=A+0+04+0 = A=-04.

2.v(0)=y(0)=0,
y =e 2°1%(=25.03Asin 25.03t + 25.03Bc0s25.03t) — 2.515¢ >*** (Ac0s25.03t +
Bsin 25.03t) — 3(0.4)sin 3t + 3(0.01) cos3t ,
= 0=0+25.03B —2.515(A + 0) — 0+ 3(0.01) =3 B =-0.0414.

sy =e2"1%(_0.4c0s25.03t —0.0414sin 25.03t) + 0.4c0s3t + 0.01sin3t. (P.S)
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6- Simultaneous Linear Ordinary Differential
Equations

Example 1: Solve the following differential equations

ﬂ+%—3t:0,
dt d

dx
2—+y=0
a7

Solution :

Using D-operator gives,
Dy +Dx=3t, ... (1)
y+2Dx=0. . (2)

In matrix form:

1 20)(4 o)
1 2D||x 0
Using Cramer’s rule to solve the above matrix, gives
3t D
0 2D 2D(3t)-D(0) __ 6

D| 2D(D)-14D) 2p2_p
1 2D

or (2D?-D)y=6. (Non-homogeneous linear ODE with constant coefficients)
2m’-m=0 = m@2m-)=0 = m =0 and m =1/2.

t/2

y =C +Ce"'".
c 2

1

Let y =At = y' =A = y" =0,
p p p

Substituting,
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2(0)— A, =6 = A =-50 =
y=Yc+y, = y=C1+C2e“2—6t.
Similarly,
D 3t
:‘1 o‘: D(O)-3t(1) _ -3t
‘D D‘ 2D(D)-1D) sp2_p’
1 2D

or (2D*-D)x=-3t. (Non-homogeneous linear ODE with constant coefficients)

2m?—m=0 =

X =C +C e''?,
c 3 4

mi2m-1)=0 =

m=0 and m =1/2.
1 2

Let xpz(BO+Blt)t:Bot+Blt2 = x'p:Bo+2|31t = x’F’):ZBl.
Substituting,
2(2B,) — (B, +2B,t) =-3t.
—-2B,=-3 = B, =3/2,
4B,-B,=0 = B, =4B =4(3/2)=6.
X =6t+ot2.
p 2
X=X, +X, = x=C3+C4e”2+6t+§t2.
Substituting x and y in Eq. (2) gives,
C +C e”2—6t+2(1c: e/ +6+3t)=0,
1 2 2 4
C +12+(C +C )e'’2=0,
1 2 4
C1+12:O = C,=-12,
C+C =0 = C=-C.
2 4 2 4
y=-12-Ce'’?2-6t and x=C +C e”2+6t+§t2,
4 3 4 2
or y=-12-Ae'’? -6t and X:B+Ae”2+6t+gt2. (G.S)
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Example 2: Solve

ﬂ+%+3y+5x—e‘t:0,
dt dt

2%+ﬂ+x+ y—-3=0.
dt dt

Solution :

Using D-operator gives,
Dx+5x+Dy+3y=e' = (D+5x+(D+3)y=e"", ... (1)
2DX+X+Dy+y=3 = @D+D)x+(D+Yy=3, ... (2)

In matrix form:;

D+5 D+3|[x| |e!
2D+1 D+1lly| | 3 |

Using Cramer’s rule to solve the above matrix, gives

e’! D+3
|3 D+1 (D+1e ' —(D+3)(3)
D+5 D+3 (D+5(D+1)-(2D+1)(D+3)
2D+1 D+1
—e '+e'-0-9 -9 9

D?+D+5D+5-(2D*+6D+D+3) —-D?-D+2 D?+D-2
or (D?+D-2)x=9. (Non-homogeneous linear ODE with constant coefficients)
m’+m-2=0 = (M+2)(m-D)=0 = m =-2 and m =1.

-2t t

X =Ce “+Ce.

1 2

C
Let x =A = X' =0=x".
p p p

Substituting,
0+0-2A =9 = A =-9/2 = X =-9/2.
p

_ 9
X=X +X, = x=Ce 2t+C2e‘—5.

Similarly,
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D+5 et
_|2D+1 3| (D+5@)-(2D+e"
‘D+5 D+3 D2_Da42
2D+1 D+1
_0+15+2 '-e'  15+e '  -15-¢'
_D?-D+2 -D?-D+2 D?+D-2

Or (D*+D-2)y=—e'-15. (Non-homogeneous LODE with constant coeffs.)
m’+m-2=0 = (M+2)(m-D=0 = m =-2 and m =1.

2t t

+Ce.
4

yc=C3e‘
Let yp:Al+A2e“ = y;:—Aze‘t = y;’)zAZe‘t.
Substituting,
Aet-Aet-2(A+Ae )=—"-15 = -—2A -2Ae '=—e'-15.
L —2A=-15 = A=15/2,
-2A=-1 = A =1/2,

y —le_t+E

p 2 2

_ _ -2t t l -t E
y=Y.+y, = y—CSe +C4e +2e +2.

Substituting x and y in Eq. (1) gives,

—2Ce *+Ce'+5(Ce *+C et—g)—zc e d4C e‘—le—‘+3(c e 4y
1 2 1 2 2 3 4 2 3

Ce‘+1e“+E):e“.
4 2 2
(3C +C )e " +(6C +4C )et—£+£+e‘t:e‘t.
13 2 4 2 2
3C +C =0 = C =-3C,
1 3 3 1
3
6C +4C =0 = C =——=C.
2 4 4 2 2
x=Ce 2 +Ce -2 and y:—3Ce‘2t—§C et ety (G.S)
1 2 2 1 2 2 2 2
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